

IBM Research

Enabling the 21st Century Healthcare IT Revolution

Rakesh Agrawal, IBM Fellow Intelligent Information Systems Research IBM Almaden Research Center

_	

Based on joint work with

- Roberto Bayardo
- Alvin Cheung
- Alexandre Evfimievski
- Tyrone Grandison
- Christopher Johnson
- Jerry Kiernan
- Kristen Lefevre
- Ramakrishnan Srikant
- Yirong Xu

Thesis

- Database technology has a central role to play in addressing challenges of the 21st Century, such as healthcare and education.
- We must move our focus from managing bits to deriving value from bits.

Agenda

- Review the PITAC report on *Revolutionizing Healthcare through Information Technology.*
- Illustrate how *Hippocratic Database* technologies can help fulfill the PITAC vision.
- Outline research challenges.

2005 Almaden Research Center

Revolutionizing Healthcare Through Information Technology President's Information Technology Advisory Committee, June 04

The Oath of Hippocrates

SWEAR by Apollo the physician, and Aesculapius, and Health, and All-heal, and all the gods and goddesses, that, according to my ability and judgment, I will keep this Oath and this stipulation - to reckon him who taught me this Art equally dear to me as my parents, to share my substance with him, and relieve his necessities if required; to look upon his offspring in the same footing as my own brothers, and to teach them this art, if they shall wish to learn it, without fee or stipulation; and that by precept, lecture, and every other mode of instruction, I will impart a knowledge of the Art to my own sons, and those of my teachers, and to disciples bound by a stipulation and oath according to the law of medicine, but to none others. (I will follow that system of regimen which, according to my ability and judgment, I consider for the benefit of my patients, and abstain from whatever is deleterious and mischievous. I will give no deadly medicine to any one if asked, nor suggest any such counsel; and in like manner I will not give to a woman a pessary to produce abortion. With purity and with holiness I will pass my life and practise my Art. (I will not cut persons labouring under the stone, but will leave this to be done by men who are practitioners of this work. Into whatever houses I enter, I will go into them for the benefit of the sick, and will abstain from every voluntary act of mischief and corruption; and, further, from the seduction of females or males, of freemen and slaves. (Whatever, in connexion with my professional practice, or not in connexion with it, I see or hear, in the life of men, which ought not to be spoken of abroad, I will not divalge, as reckoning that all such should be kept secret. While I continue to keep this Oath unviolated, may it be granted to me to enjoy life and the practise of the art, respected by all men, in all times! But should I trespass and violate this Oath, may the reverse be my lot

> From The Gennine Worksof Hippscrates translated from the Greek by Francis Adams, Surgeon, volume 2, London, 1849

当代基本的是政治就是政治政策的是在当时是在当时是在当时

	IDIVI RESEALUI
--	----------------

PITAC Framework for 21st Century Health Care Information Infrastructure

PITAC Framework

Elements	Findings and Recommendations									
Electronic Health Record	Economic Incentives for Investment in Healthcare IT	Health Information Exchange	Facilitating Sharing of EHR Technologies	Leveraging Federal Health IT Investments						
Clinical Decision										
Computerized Provider Order Entry	Standardized Clinical Vocabulary	Standardized, Interoperable EHRs	The Human- Machine Interface and EHR	Coordination of Federal NHII Development						
Secure, Private, Interoperable Health Information Exchange	Unambiguous Patient Identification	Encrypted Internet Communications	Trust Hierarchy and Authentication	Tracing Access Requests						

Hippocratic Database Technologies in the PITAC Framework

Findings and Recommendations

Elements									
Electronic Health Record	Economic Incentives for Investment in Healthcare IT	Health Information Exchange	Facilitating Sharing of EHR Technologies	Leveraging Federal Health IT Investments					
Clinical Decision Support									
Computerized Provider Order Entry	Standardized Clinical Vocabulary	Standardized, Interoperable EHRs	The Human- Machine Interface and EHR	Coordination of Federal NHII Development					
Secure, Private, Interoperable Health Information Exchange	Unambiguous Patient Identification	Encrypted Internet Communications	Trust Hierarchy and Authentication	Tracing Access Requests					
Policy-Based Private Data Management									
2005 Almaden F	Research Center								

Hippocratic Database Technologies in the PITAC Framework

Elements		Findings and F	Recommendation	S
Electronic Health Record	Economic Incentives for Investment in Healthcare IT	Health Information Exchange	Facilitating Sharing of EHR Technologies	Leveraging Federal Health IT Investments
Clinical Decision			_	
Computerized	Standardized Clinical Vocabulary	Standardized, Interoperable EHRs	The Human- Machine Interface and EHR	Coordination of Federal NHII Development
Provider Order Entry				
Secure, Private, Interoperable Health Information Exchange	Unambiguous Patient Identification	Encrypted Internet Communications	Trust Hierarchy and Authentication	Tracing Access Requests
		Secure Information Exchange		
2005 Almade	n Research Center			

Hippocratic Database Technologies in the PITAC Framework

Elements	Findings and Recommendations							
Electronic Health Record	Economic Incentives for Investment in Healthcare IT	Health Information Exchange	Facilitating Sharing of EHR Technologies	Leveraging Federal Health IT Investments				
Clinical Decision								
Support Computerized Provider Order Entry	Standardized Clinical Vocabulary	Standardized, Interoperable EHRs	The Human- Machine Interface and EHR	Coordination of Federal NHII Development				
Secure, Private, Interoperable Health Information Exchange	Unambiguous Patient Identification	Encrypted Internet Communications	Trust Hierarchy and Authentication	Tracing Access Requests				
			Efficier	nt Data Access Tracking				

Hippocratic Database Technologies

Create a new generation of information systems that protect the privacy, security, and ownership of data while not impeding the flow of information.

Policy-Based Private Data Management

Active Enforcement Database-level enforcement of disclosure policies and patient preferences

Privacy Preserving Data Mining Preserves privacy at the individual level, while still building accurate data mining models at the aggregate level Secure Information Exchange

Sovereign Information Sharing Selective, minimal sharing across autonomous data sources, without trusted third party

Optimal *k*-anonymization De-identifies records in a way that maintains truthful data but is not prone to data linkage attacks Efficient Data Access Tracking

Compliance Auditing Determine whether data has been disclosed in violation of specified policies

Database Watermarking Tracks origin of leaked data by tracing hidden bit pattern embedded in the data

	IBM Research	
--	--------------	--

		- N.	
	-	_	
_		_	

HDB Active Enforcement

• <u>Privacy Policy</u> Organizations define a set of rules describing to whom data may be disclosed (<u>recipients</u>) and how the data may be used (<u>purposes</u>)

• <u>Consent</u> Data subjects given control over who may see their personal information and under what circumstances

• <u>Disclosure Control</u> Database ensures that privacy policy and data subject consent is enforced with respect to all data access Limits the outflow of information

•Implementation intercepts and rewrites incoming queries to factor in policy, user choices, and context (e.g. purpose).

•Rewritten queries benefit from all the optimizations and performance enhancements provided by underlying engine (e.g. parallelism).

VLDB 02, WWW 03, VLDB 04

- •Disclosure control at cell-level
- •Applications do not require any modification.
- •Database agnostic; does not require any change in the database engine.

#	Name	Age	Phone
1	Adam	25	111-1111
3	Bob	-	333-3333
4	Daniel	40	-

Table Semantics (Informal)

Table "Patients"

Patient #	Name	Age	Address	Phone	#	Patient#	Name	Age	Address	Phone
1	Michael Bell	19	Palo Alto	111-1111	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2	Natalie Lewis	22	Berkeley	222-2222	2	X	х	Х	X	X
3	Robert Thorpe	23	Cambridge	333-3333	3	\checkmark	Х	Х	\checkmark	\checkmark
4	Jenny Thompson	31	New York	444-4444	4	\checkmark	\checkmark	X	Х	Х

	Patient#	Name	Age	Address	Phone
	1	Michael Bell	19	Palo Alto	111-1111
lask prohibited					
	3			Cambridge	333-3333
	4	Jenny Thompson			

Filter rows where the primary key is prohibited

Patient#	Name	Age	Address	Phone
1	Michael Bell	19	Palo Alto	111-1111
3			Cambridge	333-3333
4	Jenny Thompson			

 _	
 	_

Query Semantics Enforcement

	Patient#	Name			Age	Address	Phone	
Mask prohibited	1	Michael	Bell		19	Palo Alto	111-1111	
cells with null								
	3					Cambridge	333-3333	3
	4	Jenny T	hompso	n				
	Name		Age					
Issue Ouerv:	Michael Bel	I	19					
SELECT Name, Age								
FROM Patients								
	Jenny Thom	npson						
	Name		Age			Name		Age
entirely null from	Michael Bel	I	19			Michael Be	əll	19
result set	Jenny Thom	npson						
	Query S	emant	ics			Jenny Tho	mpson	
	. ,					Table S	Semanti	ics

_	

Query Modification Example (Table Semantics)

SELECT Name FROM Patients WHERE Age < 20

SELECT CASE WHEN EXISTS (SELECT Name_Choice FROM Patient_Choices WHERE Patients.Patient# = Patient_Choices.Patient# AND Patient_Choices.Name_Choice = 1) THEN Name ELSE null END FROM Patients WHERE Age < 20 AND EXISTS (SELECT Patient#_Choice FROM Patient_Choices WHERE Patients.Patient# = Patient_Choices.Patient# AND Patient_Choices.Patient#_Choice = 1)

	_	_
_		
		1.1.1.1.1

- Measured performance of a query selecting all records from a 5 million-record table Compared performance of original and modified queries for varied <u>choice selectivity</u> Not surprisingly, performance actually better for modified queries when we use privacy enforcement as an additional selection condition
 - Able to use indexes on choice values
- Shows the importance of database-level privacy enforcement for performance

	 _	
	_	

- Measured overhead cost using a query that selects all records
- Choice selectivity = 100%
 - Observed worst-case scenario where no rows are filtered due to privacy constraints, but incur all costs of cell-level checking
- Full bar represents elapsed time Bottom portion of bar is CPU time
- Much of the cost of privacy enforcement is CPU cost, so scales well as queries become more I/O intensive

IBM	Research

_	_	
_		
-		
_		

Summary (Active Enforcement)

- Limited Disclosure is a necessary component of a comprehensive data privacy management system
- Hippocratic database technology provides a framework for automatically limiting disclosure at the database level
 - More efficient and flexible than application-level disclosure control
 - Techniques also have broader use for other applications requiring policy-driven fine-grained disclosure control
- Framework can be deployed to an existing environment with minimal modification to legacy applications
- Query modification and consent storage approaches efficient enough to be viable in practice

HDB Compliance Auditing

Audit Scenario The doctor must now review Comptime later Jane The doctor uncovers that Jane's blood sugar level is high and suspects diabetes pb' Jun mpany, proposing over Jane com the counter diabetes alth and Human Services test Jane has not been feeling well and decides to sharing h consult her doctor companies for

Audit Expression

Problem Statement

- Given
 - A log of queries executed over a database
 - An audit expression specifying sensitive data
- Precisely identify
 - Those queries that accessed the data specified by the audit expression

Definitions (Informal)

- "Candidate" query
 - Logged query that accesses all columns specified by the audit expression
- "Indispensable" tuple (for a query)
 - A tuple whose omission makes a difference to the result of a query
- "Suspicious" query
 - A candidate query that shares an indispensable tuple with the audit expression

Example:	
Query <i>Q</i> :	Addresses of people with diabetes
Audit <i>A</i> :	Jane's diagnosis

Jane's tuple is indispensable for both; hence query Q is "suspicious" with respect to A

Suspicious SPJ Query

The candidate SPJ query Q and the audit expression A are of the form:

 $Q = \overline{\pi}_{Coq}(\sigma_{Pq}(T \times R))$ $A = \overline{\pi}_{Coa}(\sigma_{Pa}(T \times S))$

Theorem - A candidate SPJ query Q is suspicious with respect to an audit expression A iff:

 $\sigma_{P_A}(\sigma_{P_Q}(T \times R \times S) \neq \phi)$

QGM rewrites *Q* and *A* into:

 $\pi_{\mathbb{Q}_i}(\sigma_{P_A}(\sigma_{P_Q}(T \times R) \times S))$

_	_	_
_	_	
_		
	_	

System Overview

Static Analysis

		_	
_	_	-	
_	-	_	_ 7 _

Merge Logged Queries and Audit Expression

Merge logged queries and audit expression into a single query graph

_	

Transform Query Graph into an Audit Query

Suspicious SPJ Query

The candidate SPJ query Q and the audit expression A are of the form:

 $Q = \overline{\pi}_{Coq}(\sigma_{Pq}(T \times R))$ $A = \overline{\pi}_{Coa}(\sigma_{Pa}(T \times S))$

Theorem - A candidate SPJ query Q is suspicious with respect to an audit expression A iff:

 $\sigma_{P_A}(\sigma_{P_Q}(T \times R \times S) \neq \phi)$

QGM rewrites *Q* and *A* into:

 $\pi_{\mathbb{Q}_i}(\sigma_{P_A}(\sigma_{P_Q}(T \times R) \times S))$

Negligible

by using

Recovery

Log to build

Backlog tables

Overhead on Updates

of versions per tuple

Audit Query Execution Time

		the second second second
_	_	

Summary (Compliance Auditing)

- Fast and precise audits (including reads)
- Non disruptive
 - Minimal performance impact on normal operations
- Fine grained

	and the second second

IBM Research

HDB Sovereign Information Sharing

U

V

- Separate databases due to statutory, competitive, or security reasons.
 - Selective, minimal sharing on needto-know basis.
- Example: Among those who took a particular drug, how many had adverse reaction and their DNA contains a specific sequence?
 - Researchers must not learn anything beyond counts.
- Algorithms for computing joins and join counts while revealing minimal additional information.

Minimal Necessary Sharing

	ount (R 🟶 5)
A	R & S do not learn
	anything except that
	the result is 2.

Sigmod 03, DIVO 04

Problem Statement: Minimal Sharing

- Given:
 - Two parties (honest-but-curious): R (receiver) and S (sender)
 - Query Q spanning the tables R and S
 - Additional (pre-specified) categories of information I
- Compute the answer to Q and return it to R without revealing any additional information to either party, except for the information contained in I
 - For example, in the upcoming intersection protocols
 - $\mathrm{I}=\{\;|\mathsf{R}|\;,\;|\mathsf{S}|\;\}$

_			_
		- N.	
	_	_	
		_	
	-	-	
		_	

_	 _
_	
	-

Intersection Protocol

	_	
	_	
_	 	

Intersection Protocol

_	

Intersection Size

Performance

 Airline application: 150,000 (daily) passengers and 1 million people in the watch list:

120 minutes with one accelerator card

12 minutes with ten accelerator cards

 Epidemiological research: 1 million patient records in the hospital and 10 million records in the Genebank:

37 hours with one accelerator cards

3.7 hours with ten accelerator cards

AEP SSL CARD Runner 2000 ≈ \$2K 20K encryptions per minute 10x improvement over software implementation

Summary (Sovereign Information Integration)

- New applications require us to go beyond traditional Centralized and Federated information integration: Sovereign Information Integration
- Need further study of tradeoff between efficiency and
 - information disclosed
 - approximation

IBM Research

HDB Privacy Preserving Data Mining

- Insight: Preserve privacy at the individual level, while still building accurate data mining models at the aggregate level.
- Add random noise to individual values to protect privacy.
- EM algorithm to estimate original distribution of values given randomized values + randomization function.
- Algorithms for building classification models and discovering association rules on top of privacypreserved data with only small loss of accuracy.

Problem Statement (Numeric Data)

- To hide original values x₁, x₂, ..., x_n
 - from probability distribution X (unknown)

we use $y_1, y_2, ..., y_n$

- from probability distribution Y
- Problem: Given

 $- x_1 + y_1, x_2 + y_2, ..., x_n + y_n$

- the probability distribution of Y

Estimate the probability distribution of X.

Reconstruction Algorithm

 $f_X^0 :=$ Uniform distribution j := 0

repeat

$$f_{X^{j+1}}(a) := \frac{1}{n} \sum_{i=1}^{n} \frac{f_{Y}((x_{i} + y_{i}) - a)f_{X}^{J}(a)}{\int_{-\infty}^{\infty} f_{Y}((x_{i} + y_{i}) - a)f_{X}^{J}(a)} \text{ Bayes' Rule}$$

j := j+1
until (stopping criterion met)

(R. Agrawal, R. Srikant. Privacy Preserving Data Mining. SIGMOD 2000)

Converges to maximum likelihood estimate.
 (D. Agrawal & C.C. Aggarwal, PODS 2001)

Works Well

_	_	_
	N	
_		

Application to Building Decision Trees

Age	Salary	Repeat
		Visitor?
23	50K	Repeat
17	30K	Repeat
43	40K	Repeat
68	50K	Single
32	70K	Single
20	20K	Repeat

Accuracy vs. Randomization

More on Randomization

- Privacy-Preserving Association Rule Mining Over Categorical Data
 - Rizvi & Haritsa [VLDB 02]
 - Evfimievski, Srikant, Agrawal, & Gehrke [KDD-02]
- Privacy Breach Control: Probabilistic limits on what one can infer with access to the randomized data as well as mining results
 - Evfimievski, Srikant, Agrawal, & Gehrke [KDD-02]
 - Evfimievski, Gehrke & Srikant [PODS-03]
- Privacy-Preserving OLAP
 - Agrawal, Srikant, Thomas [Sigmod 05]

IBM Research

HDB Optimal *k*-Anonymization

- **Goal:** De-identify data such that it retains integrity, but is resistant to data linkage attacks.
- **Motivation:** Naïve methods are resistant to data linkage attacks, in which combine subject data with publicly available information to re-identify represented individuals.
- Samarati and Sweeney k-anonymity* method
 - A k-anonymized data set has the property that each record is indistinguishable from at least k-1 other records within the data set.
- Optimal k-anonymization
 - We have developed a k-anonymization algorithm that finds optimal k-anonymizations under two representative cost measures and variations of *k*.

Name	Phone	Diagnosis
Rob	408-402-3456	HIV
Ed	408-888-2367	Rubella
Sam	408-767-1231	Asthma

Process of k-anonymization

- Data suppression involves deleting cell values or entire tuples.
- Value generalization entails replacing specific values such as a phone number with a more general one, such as the area code alone.

Advantages of Optimal k-anonymization

- **Truthful Unlike other disclosure protection techniques** that use data scrambling, swapping, or adding noise, all information within a k-anonymized dataset is truthful.
- Secure More secure than other de-identification methods, which may inadvertently reveal confidential information.

	Name	Phone	Diagnosis
	-	408-***-***	HIV
<i>k</i> -anonymization (<i>k</i> =3, on name+phone)	-	408-***-***	Rubella
	-	408-***.***	Asthma

* P. Samarati and L. Sweeney. "Generalizing Data to Provide Anonymity when Disclosing Information." In Proc. of the 17th ACM SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems, 188, 1998.

ICDE05

into

the

HDB Order Preserving Encryption

hides

	BM	Research
--	----	----------

HDB Watermarking

- Goal: Deter data theft and assert ownership of pirated copies.
- Watermark Intentionally introduced pattern in the data.
 - Very unlikely to occur by chance.
 - Hard to find => hard to destroy (robust against malicious attacks).
- Existing watermarking techniques developed for multimedia are not applicable to database tables.
 - Rows in a table are unordered.
 - Rows can be inserted, updated, deleted.
 - Attributes can be added, dropped.
- New algorithm for watermarking database tables.
 - Watermark can be detected using only a subset of the rows and attributes of a table.
 - Robust against updates, incrementally updatable.

VLDB 02, VLDBJ 03

Challenges

Asking questions is easy: it's answering them that's hard.

	 _
_	

Policy Specification & Inference Control

- How to determine if the policy specification correctly captures the intent? (The person specifying the policy is usually not a Computer Scientists!).
- How to help the consumer understand what he is consenting to?
- For what classes of queries and policies and under what practical assumptions, can we guarantee safety from inference?
- How to use auditing for inference control?

Data Pointillism

	Name	Phone		Phone	Address	City		Patient	Policy#	
	Bob	394-1015		396-1012	Maple St	Chatham		Alice	AAA1035	
	Alice	396-1012		394-1015	-	Madison		Bob	AAA1035	
	Alice	396-1112		396-1112	Maple St	Madison		Alice	UHG1035	
• > Chc	14B recor picepoint	ds with			Pointilli	st			• Accuracy? Li	imits?
• Da sou GRI	ata from > rces in ID	22,000 RDC's							 How to someone to data? 	allow verify
• >5	50 con	nnanies	Bob	394-1015	Maple St	Madison	AAA1035		Identifying	and
com	piling dat	tabases	Alice	396-1012	Maple St	Chatham	UHG1035		correcting erro	ors?
of pvt inform	vt informa	ition	Alice	396-1112	Maple St	Madison	AAA1035		 Usage control 	ol?

Kafkaesque Nightmare or Solomonic Talisman?

Massively Distributed Data Management

- What if personal data lives on a personal device?
- On demand data sharing
- Safety of data on the device
- Distributed backup in the network

512MB SanDisk Cruzer \$47.99

Transcend 40GB Portable Hard Disk USB 95mm x 71.5mm x 15mm, \$189

_	_	
		and the second second

Privacy & Game Theory

- Assume that parties are rational and want to achieve the best result for themselves.
- What mechanisms can be designed so that the best strategy for any party (Nash equilibrium) is not to cheat?

_		
	_	
_		

Concluding Remarks

- Database technology has opportunity to play crucial role in addressing major challenges of the 21st Century, such as improving Healthcare and Education.
- We need to focus on:
 - Deriving value from bits we know how to manage so well.
 - Demonstrating what could not be done earlier.
- Will we live up to the challenge?

References

- R. Agrawal, R. Srikant. "Privacy Preserving OLAP." ACM Int'l Conf. On Management of Data (SIGMOD), June 2005.
- R. Bayardo, R. Agrawal. "Data Privacy Through Optimal k-Anonymization." Proc. of the 21st Int'l Conf. on Data Engineering, Tokyo, Japan, April 2005.
- R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, R. Srikant. "Auditing Compliance with a Hippocratic Database." 30th Int'l Conf. on Very Large Databases (VLDB), Toronto, Canada, August 2004.
- K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, D. DeWitt. "Limiting Disclosure in Hippocratic Databases." 30th Int'l Conf. on Very Large Databases (VLDB), Toronto, Canada, August 2004.
- R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. "Order Preserving Encryption of Numeric Data." ACM Int'l Conf. On Management of Data (SIGMOD), Paris, France, June 2004.
- R. Agrawal, A. Evfimievski, R. Srikant. "Information Sharing Across Private Databases." ACM Int'l Conf. On Management of Data (SIGMOD), San Diego, California, June 2003.
- R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. "An Xpath Based Preference Language for P3P." 12th Int'l World Wide Web Conf. (WWW), Budapest, Hungary, May 2003.
- R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. "Implementing P3P Using Database Technology." 19th Int'l Conf.on Data Engineering(ICDE), Bangalore, India, March 2003.
- R. Agrawal, J. Kiernan, R. Srikańt, Y. Xu. "Hippocratic Databases." 28th Int'l Conf. on Very Large Databases (VLDB), Hong Kong, August 2002.
- R. Agrawal, J. Kiernan. "Watermarking Relational Databases." 28th Int'l Conf. on Very Large Databases (VLDB), Hong Kong, August 2002.
- A. Evfimievski, R. Srikant, R. Agrawal, J. Gehrke. "Mining Association Rules Over Privacy Preserving Data." 8th Int'l Conf. on Knowledge Discovery in Databases and Data Mining (KDD), Edmonton, Canada, July 2002.
- R. Agrawal, R. Srikant. "Privacy Preserving Data Mining." ACM Int'l Conf. On Management of Data (SIGMOD), Dallas, Texas, May 2000.

Thank you!

