
Research Report
On Computing the Data Cube

Sunita Sarawagi Rakesh Agrawal Ashish Gupta

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and speci�c requests. After outside publication,
requests should be �lled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

IBM
Research Division
Yorktown Heights, New York � San Jose, California � Zurich, Switzerland

On Computing the Data Cube

Sunita Sarawagi� Rakesh Agrawal Ashish Guptay

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

ABSTRACT: On-Line Analytical Processing (OLAP) applications often require computation of
multiple related group-bys. This paper presents fast algorithms for computing a collection of group-
bys. We focus �rst on a special case of the aggregation problem|computation of the cube operator.
The cube operator requires computing group-bys on all possible combinations of a list of attributes.
Our algorithms extend hash-based and sort-based grouping methods with several optimizations, like
combining common operations across multiple group-bys, caching, and using pre-computed group-
bys for computing other group-bys. Empirical evaluation using real-life OLAP data shows that the
resulting algorithms yield a factor of two to eight improvement over straightforward methods and
have running times very close to estimated lower bounds.

We then extend our algorithms to compute a subset of a cube in which the required set of
aggregates does not include all combinations of attributes. Finally, we extend our algorithms to
handle the common OLAP case in which attributes are grouped along hierarchies de�ned on them.

�Current Address: University of California, Berkeley, California.
yCurrent Address: Oracle Corporation, Redwood City, California.

1. Introduction

Aggregation is a predominant operation in decision support database systems. On-Line Analytical
Processing (OLAP) databases [CCS93] often need to summarize data at various levels of detail and
on various combinations of attributes. Recently, [GBLP95] introduced the data cube operator for
conveniently supporting such aggregates in OLAP databases. The data cube operator computes
group-bys corresponding to all possible combinations of a list of attributes. For instance, consider
a common OLAP table Transactions with four attributes product(P), date(D), market(M) and
sales(S) that records the sales value of a company's products on various dates for various markets.
We are interested in �nding the sum of sales for each product, for each market, for each date, for
each product-market combination, for each market-date combination, and so on. This collection of
aggregate queries can be conveniently expressed using the cube-operator as follows:

select sum(S) from Transactions cube-by P, D, M

This query will result in the computation of 23 = 8 group-bys: PDM, PD, PM, DM, D, M, P and all, where
all denotes the empty group-by. The straightforward way to support the above query is to rewrite
it as a collection of eight group-by queries and execute them separately. There are several ways in
which this simple solution can be improved.

In this paper, we present fast algorithms for computing multiple aggregates. Our main focus is
on computation of the cube operator but many of our conclusions hold for the general case of the
computation of aggregates of a subset of all possible combinations of attributes. We extend our cube-
operator algorithms for this general case. In addition, in typical OLAP applications, attributes have
hierarchies de�ned on them [CCS93]. Thus, product! type! category is a hierarchy on product

that speci�es various aggregation levels for products. For instance, \ivory" and \irish spring" both
are of type \soap." Furthermore, \soap" and \shampoo" both are in category \personal hygiene"
products. We also extend our cube-operator algorithms for aggregations along hierarchies.

For this paper, we assume that the aggregating functions are distributive [GBLP95], that is, they
allow the input set to be partitioned into disjoint sets that can be aggregated separately and later
combined. Examples of distributive functions include max, min, count, and sum. The proposed
algorithms are also applicable to the algebraic aggregate functions [GBLP95], such as average, that
can be expressed in terms of other distributive functions (sum and count in the case of average). As
pointed out in [GBLP95], other aggregate functions (holistic functions of [GBLP95]) such as median
cannot be computed in parts and combined.

There are two basic methods for computing a group-by: (1) the sort-based method and (2)
the hash-based method [Gra93]. We will adapt these methods to compute multiple group-bys by
incorporating the following optimizations:

1. Smallest-parent: This optimization, �rst proposed in [GBLP95], aims at computing a group-
by from the smallest previously computed group-by. In general, each group-by can be computed
from a number of other group-bys. Figure 1 shows a four attribute cube (ABCD) and the
options for computing a group-by from a group-by having one more attribute called its parent.
For instance, AB can be computed from ABC, ABD or ABCD. ABC or ABD are clearly
better choices for computing AB. In addition, even between ABC and ABD, there can often
be big di�erence in size making it critical to consider size in selecting a parent for computing
AB.

2. Cache-results: This optimization aims at caching (in memory) the results of a group-by from
which other group-bys are computed to reduce disk I/O. For instance, for the cube in Figure 1,

1

4

ABC

AB

B C DA

ABCD

ABD ACD BCD

AC BC BD CDAD

all
Level

0

1

2

3

Figure 1: A search lattice for the cube operator

having computed ABC, we compute AB from it while ABC is still in memory.

3. Amortize-scans: This optimization aims at amortizing disk reads by computing as many
group-bys as possible, together in memory. For instance, if the group-by ABCD is stored on
disk, we could reduce disk read costs if all of ABC, ACD, ABD and BCD were computed in
one scan of ABCD.

4. Share-sorts: This optimization is speci�c to the sort-based algorithms and aims at sharing
sorting cost across multiple group-bys.

5. Share-partitions: This optimization is speci�c to the hash-based algorithms. When the
hash-table is too large to �t in memory, data is partitioned and aggregation is done for each
partition that �ts in memory. We can save on partitioning cost by sharing this cost across
multiple group-bys.

For OLAP databases, the size of the data to be aggregated is usually much larger than the available
main memory. Under such constraints, the above optimizations are often contradictory. For com-
puting B, for instance, the �rst optimization will favor BC over AB if BC is smaller but the second
optimization will favor AB if AB is in memory and BC is on disk.

Contributions.

The main contributions of this paper are:

� Design of fast algorithms for computing the data cube. We listed above �ve optimizations for
combining multiple group-bys to e�ciently compute a cube. We combine these (often contra-
dictory) optimizations into a single algorithmic framework. The resulting algorithms exhibit
signi�cant performance improvement over straightforward algorithms that compute each group-
by separately. Empirical evaluations show that they have running times very close to estimated
lower bounds. Between the sort-based and hash-based algorithms, we determine that the spar-
sity of a cube is a crucial di�erentiator.

� Extend the cube algorithms for computing a speci�ed subset of the group-bys in a cube. We
identify a reduction of the problem to the minimum steiner tree [GJ] problem. This enables
us to �nd plans that consider computation of intermediate group-bys that are not part of the
speci�ed subset but can lead to smaller total cost.

� Handle aggregation hierarchies associated with attributes . We give extensions to our algorithms
in which attributes have hierarchies de�ned on them

2

Related Work.

Methods of computing single group-bys have been well studied (see [Gra93] for a survey), but
little work has been done on optimizing a collection of related aggregates. [GBLP95] gives some rules
of thumb to be used in an e�cient implementation of the cube operator. These include the smallest
parent optimization and partitioning of data by attribute values that we adopt in our algorithms.
However, the primary focus in [GBLP95] is on de�ning the semantics of the cube operator [GBLP95].
There are reports of on-going research related to the data cube in directions complementary to
ours: [HRU96] [GHRU96] presents algorithms for deciding what group-bys to pre-compute; [SR96]
and [JS96] discuss methods for indexing pre-computed summaries to allow e�cient querying. A
concurrent work on computing data cube is reported in [DANR96].

Aggregate pre-computation is quite prevalent in statistical databases [Sho82]. Research in this area
has considered various aspects of the problem starting from developing a model for aggregate computa-
tion [CM89], indexing pre-computed aggregates [STL89] and incrementally maintaining them [Mic92].
However, there is no published work, to the best of our knowledge, in the statistical database literature
on methods for optimizing the computation of related aggregates.

Organization of the paper. In Section 2 we present the sort-based algorithm for computing the
cube and in Section 3 we present the hash-based algorithm. In Section 4 we present experimental
evaluation of our algorithms and present a comparison between sort and hash-based algorithms.
In Section 5 we suggest extensions to the cube algorithms. We make some concluding remarks in
Section 6.

2. Sort-based methods

In this section, we present the sort-based algorithm that incorporates the optimizations listed
in Section 1. We include the optimization share-sort by using data sorted in a particular order
to compute all group-bys that are pre�xes of that order. For instance, if we sort the raw data on
attribute order ABCD, then we can compute group-bys ABCD, ABC, AB and A without additional
sorts. However, this decision could conict with the optimization smallest-parent. For instance, the
smallest parent of AB might be BDA although by generating AB from ABC we are able to share the
sorting cost. It is necessary, therefore, to do global planning to decide what group-by is computed
from what and the attribute order in which it is computed. We propose an algorithm called PipeSort

that combines the optimizations share-sorts and smallest-parent to get the minimum total cost.

The PipeSort algorithm also includes the optimizations cache-results and amortize-scans to
reduce disk scan cost by executing multiple group-bys in a pipelined fashion. For instance, consider
the previous example of using data sorted in the order ABCD to compute pre�xes ABCD, ABC, AB
and A. Instead of computing each of these group-bys separately, we can compute them in a pipelined
fashion as follows. Having sorted the raw data in the attribute order ABCD, we scan the sorted data
to compute group-by ABCD. Every time a tuple of ABCD is computed, it is propagated up the
pipeline to compute ABC; every time a tuple of ABC is computed, it is propagated up to compute
AB, and so on. Thus, each pipeline is a list of group-bys all of which are computed in a single scan
of the sort input stream. During the course of execution of a pipeline we need to keep only one tuple
per group-by in the pipeline in memory.

3

Algorithm PipeSort. Assume that for each group-by we have an estimate of the number of distinct
values. A number of statistical procedures (e.g., [HNSS95]) can be used for this purpose. We discuss
in the Appendix the estimation procedure we use in our implementation.

The input to the algorithm is the search lattice de�ned as follows.

Search Lattice. A search lattice for a data cube [HRU96] is a graph where a vertex represents a
group-by of the cube. A directed edge connects group-by i to group-by j whenever j can be generated
from i and j has exactly one attribute less than i (i is called the parent of j). Thus, the out-degree
of any node with k attributes is k. Figure 1 is an example of a search lattice. Level k of the search
lattice denotes all group-bys that contain exactly k attributes. The keyword all is used to denote
the empty group-by (Level 0). Each edge in the search lattice eij is labeled with two costs. The �rst
cost S(eij) is the cost of computing j from i when i is not already sorted. The second cost A(eij) is
the cost of computing j from i when i is already sorted.

The output, O of the algorithm is a subgraph of the search lattice where each group-by is connected
to a single parent group-by from which it will be computed and is associated with an attribute order
in which it will be sorted. If the attribute order of a group-by j is a pre�x of the order of its parent
i, then j can be computed from i without sorting i and in O, edge eij is marked A and incurs cost
A(eij). Otherwise, i has to be sorted to compute j and in O, eij is marked S and incurs cost Sij .
Clearly, for any output O, there can be at most one out-edge marked A from any group-by i, since
there can be only one pre�x of i in the adjacent level. However, there can be multiple out-edges
marked S from i. The objective of the algorithm is to �nd an output O that has minimum sum of
edge costs.

Algorithm. The algorithm proceeds level-by-level, starting from level k = 0 to level k = N � 1,
where N is the total number of attributes. For each level k, it �nds the best way of computing level
k from level k + 1 by reducing the problem to a weighted bipartite matching problem1 [PS82] as
follows.

We �rst transform level k + 1 of the original search lattice by making k additional copies of each
group-by in that level. Thus each level k + 1 group-by has k + 1 vertices which is the same as the
number of children or out-edges of that group-by. Each replicated vertex is connected to the same set
of vertices as the original vertex in the search lattice. The cost on an edge eij from the original vertex
i to a level k vertex j is set to A(eij) whereas all replicated vertices of i have edge cost set to S(eij).
We then �nd the minimum 2 cost matching in the bipartite graph induced by this transformed graph.
In the matching so found, each vertex h in level k will be matched to some vertex g in level k+ 1. If
h is connected to g by an A() edge, then h determines the attribute order in which g will be sorted
during its computation. On the other hand, if h is connected by an S() edge, g will be re-sorted for
computing h.

For illustration, we show how level 1 group-bys are generated from level 2 group-bys for a three
attribute search lattice. As shown in Figure 2(a), we �rst make one additional copy of each level
2 group-by. Solid edges represent the A() edges whereas dashed edges indicate the S() edges. The

1The weighted bipartite matching problems is de�ned as follows: We are given a graph with two disjoint sets of
vertices V1 and V2 and a set of edges E that connect vertices in set V1 to vertices in set V2. Each edge is associated
with a �xed weight. The weighted matching problem selects the maximum weight subset of edges from E such that in
the selected subgraph each vertex in V1 is connected to at most one vertex in V2 and viceversa.

2Note we can covert a mininum weight matching to a maximum weight matching de�ned earlier by replacing each
edge weight w by max(w)�w where max(w) is the maximum edge cost.

4

number underneath each vertex is the cost of all out-edges from this vertex. In the minimum cost
matching (Figure 2(b)), A is connected to AB with an S() edge and B by an A() edge. Thus at level
2, group-by AB will be computed in the attribute order BA so that B is generated from it without
sorting and A is generated by resorting BA. Similarly, since C is connected to AC by an A() edge,
AC will be generated in the attribute order CA. Since, BC is not matched to any level-1 group-by,
BC can be computed in any order.

A

AB AB AC AC BC BC

CB

2 10 5

(b) Minimum cost matching

12 13 20

A

AB AB AC AC BC BC

CB

2 10 5 12 13 20

(a) Transformed search lattice

Figure 2: Computing level 1 group-bys from level 2 group-bys in a 3 attribute cube

We use the algorithm in [PS82] for �nding the minimum cost matching in a bipartite graph3. The
complexity of this algorithm is O(((k + 1)Mk+1)

3), where Mk+1 is the number of group-bys in level
k + 1.

PipeSort:
(Input: search lattice with the A() and S() edges costs)
For level k = 0 to N � 1 /* N is the total number of attributes */

/* determine how to generate level k from level k + 1 */
Generate-Plan(k + 1! k);
For each group-by g in level k + 1

Fix the sort order of g as the order of the level k group-by
that is connected to g by an A() edge;

Generate-Plan(k + 1! k)
Create k additional copies of each level k + 1 vertex;
Connect each copy vertex to the same set of level k vertices as the original vertex;
Assign cost A(eij) to edge eij from the original vertex and cost S(eij) to edge from the copy vertex;
Find the minimum cost matching on the transformed level k + 1 with level k;

Example: We illustrate the PipeSort algorithm for the four attribute lattice of Figure 1. For
simplicity, assume that for a given group-by g the costs A() and S() are the same for all group-bys
computable from g. The pair of numbers underneath each group-by in Figure 3 denote the A() and
S() costs. Solid edges denote A() edges and dashed edges denote S() edges. For these costs, the
graph in Figure 3(a) shows the �nal minimum cost plan output by the PipeSort algorithm. Note
that the plan in Figure 3(a) is optimal in terms of the total cost although the total number of sorts is
suboptimal 4.

In Figure 3(b) we show the pipelines that are executed. Sorts are indicated by ellipses. We would
�rst sort data in the order CBAD. In one scan of the sorted data, CBAD, CBA, CB, C and all

would be computed in a pipelined fashion. Then group-by ABCD would be sorted into the new order
BADC and thereafter BAD, BA and B would be computed in a pipelined fashion.

3The code for the matching algorithm is available from ftp-request@theory.stanford.edu
4The optimal number of sorts for a N attribute cube is C(N;N=2) where C(N; i) = N !

i!(N�i)! denotes the total number

of group-bys containing i attributes [GGL95].

5

ACD ACD

D

DB

sort edges

pipeline edges

Raw data

BC

DBC
ACD

AC

A

AD CDCB BA

BAD DBC ABD
ACD
5 20

5 15 5 155 155 15
AC AD CD
4 14 10 20

B DC A
all

2 4 5 8 4 134 16

(a) The minimum cost sort plan

all

50 160

10 30 15 40 45 130 CBA

CBAD CBAD CBAD CBAD

Raw data

(b) The pipelines that are executed

CB

CBA

CBAD

BA

BAD

DB

Figure 3: Sort-based method for computing a four attribute cube

We can make the following claims about algorithm PipeSort.

Claim 2.1. Generate-plan() �nds the best plan to get level k from level k + 1.

Proof. Follows by construction assuming a cost function where the cost of sorting a group-by does
not depend on the order in which the group-by is already sorted.

Claim 2.2. Generate-plan(k + 1! k) does not prevent Generate-plan(k + 2! k + 1) from �nding
the best plan.

Proof. After we have �xed the way to generate level k from level k+ 1 the only constraint we have
on level k+ 1 is the order in which the group-bys should be generated. This ordering does not a�ect
the minimum matching solution for generating level k+ 1 from k+ 2. After �nding the best solution
for generating level k + 1 from level k + 2, we can always change the order in which each group-by
should be generated (as dictated by level k solution) without a�ecting the minimum cost.

Note that PipeSort computes each group-by from a group-by occurring only in the immediately
preceding level. Although the level-by-level approach is not provably optimal, we have not been able
to �nd any case where generating a group-by from a group-by not in the preceding level leads to a
better solution. Our experiments reported in Section 4 also show that our solution is very close to
empirically estimated lower bounds for several datasets.

Further Enhancements. Our implementation of PipeSort includes the usual optimizations of
aggregating and removing duplicates while sorting, instead of doing aggregation as a di�erent phase
after sorting[Gra93]. Often we can reduce the sorting cost by taking advantage of the partial sorting
order. For instance, in Figure 3 for sorting ACD in the attribute order AD, we can get a sorted run
of D for each distinct value of AC and for each distinct A we can merge these runs of D. Also, after
the PipeSort algorithm has �xed the order in which each group-by is generated we can modify the
sort-edges in the output search lattice to take advantage of the partial sorting orders whenever it is
advantageous to do so.

6

3. Hash-based methods

We now discuss how we extend the hash-based method for computing a data cube. For hash-based
methods, the new challenge is careful memory allocations of multiple hash-tables for incorporating
optimizations cache-results and amortize-scans. For instance, if the hash tables for AB and AC
�t in memory then the two group-bys could be computed in one scan of ABC. After AB is computed
one could compute A and B while AB is still in memory and thus avoid the disk scan of AB. If
memory were not a limitation, we could include all optimizations stated in Section 1 as follows.

Compute the bottom-most (level N) group-by in the lattice from raw data;
For k = N � 1 to 0

For each k + 1 attribute group-by, g
Compute in one scan of g all k attribute group-by for which g is the smallest parent;
Save g to disk and release memory occupied by the hash table of g;

However, the data to be aggregated is usually too large for the hash-tables to �t in memory.
The standard way to deal with limited memory when constructing hash tables is to partition the
data on one or more attributes. When data is partitioned on some attribute, say A, then all group-
bys that contain A can be computed by independently grouping on each partition | the results
across multiple partitions need not be combined. We can share the cost of data partitioning across
all group-bys that contain the partitioning attribute, leading to the optimization share-partitions.
We present below the PipeHash algorithm that incorporates this optimization and also includes the
optimizations cache-results, amortize-scans and smallest-parent.

Algorithm PipeHash. The input to the algorithm is the search lattice described in the previous
section. The PipeHash algorithm �rst chooses for each group-by, the parent group-by with the
smallest estimated total size. The outcome of this step is a minimum spanning tree (MST) where
each vertex is a group-by and an edge from group-by a to b indicates that a is the smallest parent
of b. In Figure 4 we show the MST for a four attribute search lattice (the size of each group-by is
indicated below the group-by).

In general, the available memory will not be su�cient to compute all the group-bys in the MST
together, hence the next step is to decide what group-bys to compute together, when to allocate and
deallocate memory for di�erent hash-tables, and what attribute to choose for partitioning data. We
conjecture this problem to be NP-complete because solving this problem optimally requires us to
solve the following sub-problem optimally: Divide the MST into smaller subtrees each of which can
be computed in one scan of the group-by at the root of the MST such that the cost of scanning (from
disk) the root group-by is minimized. This problem is similar to well-known NP-complete partitioning
problems [GJ]. Hence, we resort to using a heuristic solution. Later (in Section 4) we show that our
solution is very close to empirically estimated lower bounds for several datasets.

Optimizations cache-results and amortize-scans are favored by choosing as large a subtree of the
MST as possible so that we can use the method above to compute together the group-bys in the
subtree. However, when data needs to be partitioned based on some attribute, the partitioning
attribute limits the subtree to only include group-bys containing the partitioning attribute. We
therefore, choose a partitioning attribute that allows the choice of the largest subtree as shown in the
pseudo-code of the PipeHash algorithm below.

PipeHash:

7

ABC

AB

B C DA

ABCD

ABD ACD

ABC

BCD

AC AD CD BD

all

100

30 5090

10 20 20 2012

2 58 4

Raw Data

40

BC
20

B

BCD

BC

ABCD

CD BD

C D

(a) Minimum spanning tree (b) First subtree: partitioned on A (c) Remaining subtrees

ABC

AB

ABCD

ABD ACD

AC AD

Raw Data

A all

A

AB

Figure 4: PipeHash on a four attribute group-by

(Input: search lattice with estimated size of each group-by)
Initialize worklist with MST of the search lattice;
While worklist is not empty

Pick any tree T from the worklist;
T 0 = Select-subtree of T to be executed next;
Compute-subtree T 0;

Select-subtree
If memory required by T < memory available, return T
Else, let S be the set of attributes of root(T)

(We will pick s � S for partitioning root of T . For any choice of s we get a subtree Ts of
T also rooted at T and consisting of all group-bys that contain s.)

Let Ps = maximum number of partitions of root(T) possible if partitioned on s � S;
We choose s � S such that

memory required by Ts/Ps < memory available, and
Ts is the largest over all subsets of S;

Remove Ts from T ;
This leaves T � Ts which is a forest of smaller trees, add this to the worklist;

return Ts;

Compute-subtree

numParts = (memory required by T 0)*(fudge factor)/memory available;
Partition root of T 0 into numParts;
For each partition of root(T 0)

For each node in T 0 (scanned in a breadth �rst manner)
Compute all children of the node in one scan;
If the node is cached, save it to disk and release memory occupied by its hash-table;

Example: Figure 4 illustrates the PipeHash algorithm for the four attribute search lattice of Figure 1.
The boxed group-bys represent the root of the subtrees. Figure 4(a) shows the minimum spanning
tree. Assume there is not enough memory to compute the whole tree in one pass and we need to
partition the data. Figure 4(b) shows the �rst subtree TA selected when A is chosen as the partitioning
attribute. After removing TA from the MST, we are left with four subtrees as shown in Figure 4(c).
None of the group-bys in these subtrees include A. For computing TA, we �rst partition the raw data

8

on A. For each partition we compute �rst the group-by ABCD; then scan ABCD (while it is still in
memory) to compute ABC, ABD and ACD together; save ABCD and ABD to disk; compute AD
from ACD; save ACD and AD to disk; scan ABC to compute AB and AC; save ABC and AC to
disk; scan AB to compute A and save AB and A to disk. After TA is computed, we compute each of
the remaining four subtrees in the worklist.

Note that PipeHash incorporates the optimization share-partitions by computing from the same
partition all group-bys that contain the partitioning attribute. Also, when computing a subtree we
maintain all hash-tables of group-bys in the subtree (except the root) in memory until all its children
are created. Also, for each group-by we compute its children in one scan of the group-by. Thus
PipeHash also incorporate the optimizations amortize-scans and cache-results.5

PipeHash is biased towards optimizing for the smallest-parent. For each group-by, we �rst �x the
smallest parent and then incorporate the other optimizations. For instance, in Figure 4(c), we could
have computed BC from BCD instead of its smallest parent ABC and thus saved the extra scan on
ABC. However, in practice, saving on sequential disk scans is less important than reducing the CPU
cost of aggregation by choosing the smallest parent.

Hashing Structures. There are two classes of hash tables depending on whether or not we allow
collisions within a bucket. The non-collision based hashing scheme reduces to a multidimensional
array where the data attributes are hashed into contiguous unique integers, typically during a pre-
pass of the data. For the collision based schemes, the hash function we use is concatenation of the
�rst ni bits for each attribute i of the tuple. We will use the term Hash-Grid to refer to the collision
based scheme and the term Hash-Array to refer to the non-collision based scheme.

The Hash-Grid is expected to be better when the data distribution in the N -dimensional space of
the attributes is sparse because the Hash-Array scheme will result in lots of empty cells. On the other
hand, the Hash-Array scheme has smaller space overhead per hashed tuple. For the Hash-Array we
need to store only the aggregate values for each tuple since the attributes of the tuple can be uniquely
determined by the indices of the hashed cell. In contrast, for the Hash-Grid the entire tuple needs to
be stored. We use the following method for choosing between the Hash-Array and Hash-Grid for a
given group-by.

Consider a k attribute group-by A1A2 : : :Ak. Let Di be the number of distinct values along
attribute i and M be the estimated number of tuples in the group-by. Further, let sizeof(aggregate
column) denote the total space required for the aggregating columns and all intermediate results
of the aggregate functions and sizeof(attribute) denote the size of each of grouping attribute. The
memory required for the Hash-Array is

Ma =
kY
i=1

Di � sizeof(array cell) +M � sizeof(aggregate column)

5When we run out of memory because of data skew we need to release memory by freeing-up some hash-tables of
cached group-bys. Note that we do not do any caching across partitions and across subtrees. Within a subtree we
choose the hash-tables to be released in the following order:

i) completed hash-tables that will not be used for generating other group-bys

ii) completed hash-tables that will be used or are being used

iii) incomplete hash-tables if there are more than one being generated

iv) part of a hash-table if it is the only one being generated.

When incomplete hash-tables or part of a hash-table is freed, the parent group-by will need to be re-scanned from disk
to generate the remaining group-bys or part of a group-by as the case may be.

9

whereas memory required for the Hash-Grid (assuming a perfect hash function) is

Mh =M�sizeof(hash bucket)�Fugdefactor+M �(k�sizeof(attribute)+sizeof(aggregate column)):

Based on these estimates we choose the method with the smaller memory requirement. When memory
is not a constraint, the Hash-Array method is preferred since we do not need to compare values after
hashing.

4. Experimental evaluation

In this section, we present the performance of our cube algorithms on several real-life datasets
and analyze the behavior of these algorithms on tunable synthetic datasets. These experiments were
performed on a RS/6000 250 workstation running AIX 3.2.5. The workstation had a total physical
memory of 256 MB. We used a bu�er of size 32 MB. The datasets were stored as at �les on a local
2GB SCSI 3.5" drive with sequential throughput of about 1.5 MB/second.

Datasets. Table 1 lists the �ve real-life datasets used in the experiments. These datasets were
derived from sales transactions of various department stores and mail order companies. A brief
description is given next. The datasets di�er in the number of transactions, the number of attributes,
and the number of distinct values for each attribute. For each attribute, the number within brackets
denotes the number of its distinct values.

� Dataset-A: This data is about supermarket purchases. Each transaction has three attributes:
store id(73), date(16) and item identi�er(48510). In addition, two attributes cost and amount
are used as aggregation columns. There are a total of 5.5 million transactions.

� Dataset-B: This data is from a mail order company. A sales transaction here consists of four
attributes: the customer identi�er(213972), the order date(2589), the product identi�er(15836),
and the catalog used for ordering(214). There are a total of 7.5 million transactions.

� Dataset-C: This is data about grocery purchases of customers from a supermarket. Each
transaction has �ve attributes: the date of purchase(1092), the shopper type(195), the store
code(415), the state in which the store is located(46) and the product group of the item pur-
chased(118). There are a total of 9 million transactions.

� Dataset-D: This is data from a department store. Each transaction has �ve attributes: the
store identi�er(17), the date of purchase(15), the UPC of the product(85161), the department
number(44) and the SKU number(63895). There are a total of 3 million transactions.

� Dataset-E: This data is also from a department store. Each transaction has total of six
attributes: the store number(4), the date of purchase(15), the item number(26412), the business
center(6), the merchandising group(22496) and a sequence number(255). A seventh attribute:
the quantity of purchase was used as the aggregating column. The total number of transactions
equaled 0.7 million.

Algorithms compared. For providing a basis of evaluation, we choose the straightforward method
of computing each group-by in a cube as a separate group-by resulting in algorithms NaiveHash and
NaiveSort depending on whether group-bys are computed using hash-based or sort-based methods.
We further compare our algorithms against easy but possibly unachievable lower-bounds.

For the hash-based method the lower bound is obtained by summing up the following operations:
Compute the bottom-most (level-N) group-by by hashing raw-data stored on disk; include the data

10

Dataset Number of grouping number of tuples size
attributes (in millions) (in MB)

Dataset-A 3 5.5 110
Dataset-B 4 7.5 121
Dataset-C 5 9 180
Dataset-D 5 3 121
Dataset-E 6 0.7 18

Table 1: Description of the datasets

partitioning cost if any. Compute all other group-bys by hashing the smallest parent assumed to be
in memory; ignore data partitioning costs. Save all computed group-bys to disk.

For the sort-based method the lower bound is obtained by summing up the following operations:
Compute the bottom-most (level-N) group-by by sorting the raw-data stored on disk. Compute all
other group-bys from the smallest parent assumed to be in memory and sorted in the order of the
group-by to be computed. Save all computed group-bys.

For both lower-bounds, we assume a perfect knowledge of the exact number of tuples in each
group-by.

Performance results. Figure 5 shows the performance of the proposed PipeHash and PipeSort
relative to the corresponding naive algorithms and estimated lower bounds. The total execution time
is normalized by the time taken by the NaiveHash algorithm for each dataset to enable presentation on
the same scale. For all datasets except Dataset-A we used Hash-Grid for the hash-based algorithms.
We can make the following observations.

� Our algorithms are two to eight times faster than the naive methods.

� The performance of PipeHash is very close to our calculated lower bound for hash-based algo-
rithms. The maximum di�erence in performance is 8%.

� The maximum gap between the performance of PipeSort and the calculated lower bound for
the sort-based method is 22%.

� For most of the datasets, PipeHash is inferior to the PipeSort algorithms. We suspected this to
be an artifact of these datasets. To further investigate the di�erence between them, therefore,
we did a series of experiments on a synthetically generated dataset described next.

4.1. Comparing PipeSort and PipeHash

For the datasets in Table 1, the sort-based method performs better than the hash-based method.
For Dataset-D, PipeSort is almost a factor of two better than PipeHash. Based on results in [GLS94],
we had expected the hash-based method to be comparable or better than the sort-based method.
Careful scrutiny of the performance data revealed that this deviation is because after some parent
group-by is sorted we compute more than one group-by from it whereas for the hash-based method
we build a di�erent hash table for each group-by. Even though we share the partitioning cost for the
hash-based method, the partitioning cost is not a dominant fraction of the total cost unlike sorting.

We conjectured that the hash-based method can perform better than the sort-based method when
each group-by results in a considerable reduction in the number of tuples. This is because the cost of

11

NH: NaiveHash PH: PipeHash NS: NaiveSort PS: PipeSort

 Lower-bound Extra

 0

 0.2

 0.4

 0.6

 0.8

 1

 N
H

 N
S

 P
H

 P
S

 Dataset-A

 N
H

 N
S

 P
H

 P
S

 Dataset-B

 N
H

 N
S

 P
H

 P
S

 Dataset-C

 N
H

 N
S

 P
H

 P
S

 Dataset-D

 N
H

 N
S

 P
H

 P
S

 Dataset-E

 Lower-bound Extra

 0

 0.2

 0.4

 0.6

 0.8

 1

 N
H

 N
S

 P
H

 P
S

 Dataset-A

 N
H

 N
S

 P
H

 P
S

 Dataset-B

 N
H

 N
S

 P
H

 P
S

 Dataset-C

 N
H

 N
S

 P
H

 P
S

 Dataset-D

 N
H

 N
S

 P
H

 P
S

 Dataset-E

Figure 5: Performance of the cube computation algorithms on the �ve real life datasets. The y-axis
denotes the total time normalized by the time taken by the NaiveHash algorithm for each dataset.

hashing at higher levels of aggregations can become a negligible fraction of the total cost when the
number of tuples reduces rapidly. To validate our conjecture that the performance di�erence between
the hash-based method and sort-based method is mainly due to the rate of decrease in the number of
tuples as we aggregate along more and more attributes, we took a series of measurements on synthetic
datasets described below.

Synthetic datasets. Each dataset is characterized by four parameters:

1. Number of tuples, T .

2. Number of grouping attributes, N .

3. Ratio amongst the number of distinct values of each attribute d1 : d2 : : : : : dN .

4. A parameter, p, that provides a knob for altering the degree of sparsity of the data. It is de�ned
as the ratio of T to the total number of possible attribute value combinations. Thus, if Di

denotes the number of distinct values of attribute i, then p is de�ned as T=(D1 � D2 : : :DN).
Clearly, higher the degree of sparsity (lower value of p), lower the reduction in the number of
tuples after aggregation.

Given these four parameters, the dataset is generated as follows. We �rst determine the total number
of values Di along each dimension i as:

Di =

�
T

p

� 1
N di

(d1 � d2 � : : :� dN)
1
N

Then, for each of the T tuples, we choose a value for each of the N attributes from a uniform random
distribution between 1 and the number of values for the attribute (i.e, Di for attribute i).

12

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.001 0.01 0.1 1 10 100

r
a
t
i
o
:

h
a
s
h
-
b
a
s
e
d
/
s
o
r
t
-
b
a
s
e
d

% density (Decreasing sparisty)

(a) Ratio 1:2:4:20:300

0.5

0.6

0.7

0.8

0.9

1

1.1

0.001 0.01 0.1 1 10 100

r
a
t
i
o
:

h
a
s
h
-
b
a
s
e
d
/
s
o
r
t
-
b
a
s
e
d

% density (Decreasing sparisty)

(b) Ratio 1:1:1:1:1

Figure 6: E�ect of sparseness on relative performance of the hash and sort-based algorithms for a 5
attribute synthetic dataset.

Results. We show the results for two sets of synthetic datasets. For each dataset in Figure 6(a) the
total number of tuples is 5 million, the number of dimensions is 5, and the ratio between the number of
distinct values of each attribute is 1:2:4:20:300 (large variance in number of distinct values). We vary
the sparsity by changing p. The X-axis denotes decreasing levels of sparsity and the Y -axis denotes
the ratio between the total running time of algorithms PipeHash and PipeSort. We notice that as
the data becomes less and less sparse the hash-based method performs better than the sort-based
method.

We repeated the same set of measurements for datasets with same number of tuples and dimensions
as in Figure 6(a) but with a di�erent ratio, 1:1:1:1:1 (Figure 6(b)). Comparing Figures 6(a) and (b),
we notice the same trend for datasets with very di�erent characteristics, empirically con�rming that
sparsity indeed is a predictor of the relative performance of the PipeHash and PipeSort algorithms.

5. Extensions

5.1. Partial cube

Very often the user is interested in only some of the group-by combinations instead of all possible
combinations of attributes as in the data cube.

We can use the ideas developed for the cube algorithms to improve the performance of these
computations. A trivial extension is to apply the PipeSort and PipeHash algorithm on the search
lattice consisting of only group-bys that need to computed. However, more e�cient computations
can be achieved by generating intermediate group-bys even if they are not in the original requested
subset. For instance, consider a four attribute cube. Even if a user is interested in only three group-
bys ABC, ACD, BCD, it might be faster to �rst compute group-by ABCD and then compute the
three group-bys from ABCD rather than compute each one of them from the raw data. We present
extensions to the hash and sort-based methods that will consider such intermediate group-bys for
computing a speci�ed collection of group-bys.

13

Raw data

AC

A B

119

221

(b) Best Plan with additional node ABC

A B

ABC

AC

Raw data

239

2 2
5

3

(a) Best plan without extra nodes

Figure 7: Computing group-by AC, A and B for the Synthetic dataset using the hash-based method.

Hash-based method. The input to the algorithm is (i) the search lattice G, modi�ed to have edges
between all group-by pairs (e; f) where f can be generated from e and not just between group-bys in
adjacent levels, (ii) cost w on each edge (e; f) that denotes the cost of generating group-by f from e

and (iii) a subset Y of the group-bys in G that needs to be computed. Our task is to �nd the minimal
cost tree of G that includes at least all of Y and the starting raw data.

This problem is akin to the minimal steiner tree problem [GJ]. It is shown in [GJ] that the general
steiner tree problem is NP-complete and [LN90] shows that it is NP-complete even for the special
case of a cube graph that represents our search lattice. Hence, we will resort to approximate methods
of computing the minimal cost tree. There are a number of existing approximate methods for the
steiner tree problem and we borrow the one in [MSL80].

After we have found the minimal cost tree of G, we can use the PipeHash algorithm to compute
the required group-bys. An illustration of the above scheme is given in Figure 7 for the Synthetic
data set presented in Section 4.1(Figure 6(a), p=20%). Assume we wanted to compute group-bys A,
B and AC. The best plan with the straight forward extension of the hashing method would take a
total of 342 seconds whereas with the steiner tree method we would add the extra node ABC which
results in a total cost of 249 seconds.

Sort-based method. For the sort-based method we cannot directly adapt the solution of the hash-
based method since the cost of generating one group-by from another group-by g depends on the order
in which g is sorted. Hence, we construct a di�erent search lattice where for each group-by g of level
k, k! sort-nodes are added corresponding to each possible permutation of the attributes of g. The cost
on an edge e from sort-node g to h denotes the cost of generating group-by sorted in order h from
group-by sorted in order g. In addition, for each group-by g in set Y , we add a select-node and each
of the sort-nodes of g are joined by a zero-cost edge to this select-node. We then apply the steiner
tree algorithm to �nd the smallest tree including all the select-nodes and the raw data node.

The number of nodes in the search lattice using this method can be prohibitively large. However,
a large number of nodes can easily be pruned. One pruning heuristic is to start from group-bys at
level zero and start pruning sort-nodes level by level. For each level k, we only include sort-nodes
that (i) have some pre�x at higher levels and (ii) contain only attributes from sort-nodes of higher
levels, except when the sort-node is of a group-by from set Y .

We illustrate this pruning step for the example of Figure 7. Figure 8(a) shows the pruned search
lattice for the set Y consisting ofA, B andAC. The select-nodes are within boxes and the intermediate
sort-nodes are within ellipses. The numbers on edges indicates the time taken to compute one group-
by from the other. At level 2, we have three sort-nodes AC, AB and BA. We have pruned CA, CD,
CB, DE and all other nodes which have neither A nor B as pre�x and hence violate condition (i).
We have pruned BC, AD, BD and all other nodes containing attributes C, D or E since they violate

14

AC

A

AC

A

(a) Pruned search lattice

Raw data

AC

BA

2 1
2

1

1

2

240

250 250
125

10
4 10 2

4
3

0

B0 0

ABC

250

ACB BAC

AB BA

Raw data

AC

BA

2

250

10

3

0

B0 0

ACB

(b) Best plan after Steiner approximation

Figure 8: Computing group-by AC, A and B for the Synthetic dataset using the sort-based method.

condition (ii) except AC which belongs to set Y . Similarly, at level 3, we prune all sort-nodes except
ABC, ACB and BAC. The best plan after applying the steiner tree algorithm on this search lattice
is shown in Figure 8(b).

5.2. Hierarchies

It is common in OLAP applications for attributes to have hierarchies associated with them. For
instance, going back to the example in Section 1, there is hierarchy date! month! year on attribute
date and hierarchy product ! type ! category on attribute product. The requirement, in this
case, is to compute group-bys for each combination of attributes along each level of the hierarchy.

The cube algorithms can be extended to handle attributes with hierarchies de�ned on them. We
�rst construct a search lattice as follows. Start from the base level that contains just one group-by
where each attribute is at the lowest level of detail of the hierarchy. From each group-by g, draw arcs
to all other group-bys where exactly one of the attributes of g is at the next higher level of hierarchy. In
Figure 9 we show the search lattice for two attributes A and B with hierarchy A1

! A2
! A3

! all

on A and the hierarchy B1
! B2

! all on B.

Algorithms PipeHash and PipeSort can be applied to this search lattice with only a few modi�ca-
tions. The PipeHash algorithms changes only in the way partitions are handled. When partitioning
on attribute Ai, we group-by on all attributes that contains any attribute below Ai in the hierarchy
i.e., A1 : : :Ai. For the PipeSort algorithm, the sorting routine needs to be modi�ed so that when data
is sorted on attribute Ai it is sorted for all higher levels of the hierarchy, i.e., Ai : : :all.

6. Conclusion

We presented fast algorithms for computing multiple group-bys. We �rst concentrated on the
computation of the data cube that requires all group-bys corresponding to each of the 2N combinations
ofN attributes. We presented �ve optimizations smallest-parent, cache-results, amortize-scans, share-
sorts and share-partitions, and embellished the sort-based and hash-based methods for computing
single group-bys with these optimizations. These optimizations are often conicting. Our proposed
algorithms combine them so as to reduce the total cost. The sort-based algorithm, called PipeSort,
develops the best plan by reducing the problem to a minimum weight matching problem on a bipartite
graph. The hash-based algorithm, called PipeHash, develops the best plan by �rst creating the

15

6

6

6

���:

6

.

6

.Q
QQk
�
�
�3

6

6

�
�
�>

.�
�
��

6

.

A2

�
�
�>

�
��3

�
�
�>

PPPi
B2 A3

all

A1B1

A2B1 A1B2

A3B1 A2B2 A1

B1 A3B2

Figure 9: Attributes with hierarchy.

minimum spanning tree showing what group-by should be generated from what and then choosing a
partitioning that takes into account memory availability.

Measurements on �ve real-life olap datasets yielded a factor of two to eight improvement with
our algorithms over straightforward methods of computing each group-by separately. Although the
PipeHash and PipeSort algorithms are not provably optimum, comparison with conservatively calcu-
lated lower bounds show that the PipeHash algorithm was within 8% and the PipeSort algorithm was
within 22% of these lower bounds on several datasets. We further experimented with the PipeHash
and PipeSort algorithms using a tunable synthetic dataset and observed that their relative perfor-
mance depends on the sparsity of data values. PipeHash does better on low sparsity data whereas
PipeSort does better on high sparsity data. Thus, we can choose between the PipeHash and PipeSort
algorithms for a particular dataset based on estimated sparsity of the dataset.

We extended the cube algorithms to compute a speci�ed subset of the 2N group-bys instead of
all of them. Our proposed extension considers intermediate group-bys that are not in the desired
subset for generating the best plan. Our method reduces this optimization problem to the minimum
steiner tree problem so that we can �nd globally good solutions for generating a speci�ed list of group-
bys. We also extended our algorithms for computing aggregations in the presence of hierarchies on
attributes.

We expect the optimizations and algorithms developed in this paper to be very useful for olap
databases because computation of multiple aggregates is a frequent operation not only during the
data loading phase but also during ad-hoc query processing where fast response is crucial.

References.

[CCS93] E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computerworld, 27(30), July
1993.

[CM89] M.C. Chen and L.P. McNamee. The data model and access method of summary data management.
IEEE Transactions on Knowledge and Data Engineering, 1(4):519{29, 1989.

[DANR96] P.M. Deshpande, S. Agarwal, J.F. Naughton, and R. Ramakrishnan. Computation of multidimen-
sional aggregates. Technical Report Computer Science Technical Report TR1314, University of
Wisconsin, Madison, Wisconsin, 1996.

16

[GBLP95] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation opera-
tor generalizing group-by, cross-tabs and sub-totals. Technical Report MSR-TR-95-22, Microsoft
Research, Advance Technology Division, Microsoft Corporation, Redmond, Washington, November
1995.

[GGL95] R. L. Graham, M. Gr�otschel, and L. Lovasz, editors. Handbook of combinatorics : volume 1,
chapter 8. Elsevier, Amsterdam, 1995.

[GHRU96] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Je�rey D. Ullman. Index selection
for olap, 1996. Working Paper.

[GJ] M.R. Garey and D.S. Johnson. Computers and Intractability, chapter Appendix, pages 208{209.

[GLS94] Goetz Graefe, Ann Linville, and Leonard D. Shapiro. Sort versus hash revisited. IEEE Transactions
on Knowledge and Data Engineering, 6(1):934{944, 1994.

[Gra93] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2):73{
170, Jun 1993.

[HNSS95] P.J. Haas, J.F. Naughton, S. Seshadri, and L. Stokes. Sampling-based estimation of the number
of distinct values of an attribute. In Proceedings of the Eighth International Conference on Very
Large Databases (VLDB), pages 311{22, Zurich, Switzerland, September 1995.

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes e�ciently. In Proc. of
the ACM SIGMOD Conference on Management of Data, June 1996.

[JS96] T. Johnson and D. Shasha. Hierarchically split cube forests for decision support: description and
tuned design, 1996. Working Paper.

[LN90] X. Lin and L.M. Ni. Multicast communication in multicomputer networks. In Proc. International
Conference on Parallel Processing, pages III{114{18, 1990.

[Mic92] Z. Michalewicz. Statistical and Scienti�c Databases. Ellis Horwood, 1992.

[MSL80] J. MacGregor Smith and J.S Liebman. An o(n2) heuristic algorithm for the directed steiner minimal
tree problem. Applied Mathematical Modelling, 4(5):369{75, Oct 1980.

[PS82] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity,
chapter 11, pages 247{254. 1982.

[Sho82] A. Shoshani. Statistical databases: Characteristics, problems and some solutions. In Proceedings
of the Eighth International Conference on Very Large Databases (VLDB), pages 208{213, Mexico
City, Mexico, September 1982.

[SR96] B. Salzberg and A. Reuter. Indexing for aggregation, 1996. Working Paper.

[STL89] J. Srivastava, J.S.E. Tan, and V.Y. Lum. Tbsam: An access method for e�cient processing of
statistical queries. IEEE Transactions on Knowledge and Data Engineering, 1(4), 1989.

A. Procedure for estimating the size of group-bys

We give in this appendix the method we used for estimating the size of each group-by in our experiments.
Our approach was to start with some rough estimates of the size of each group-by and re�ne these estimates
during the course of computing the cube.

As suggested in [GBLP95], we �rst convert the raw data by mapping each attribute value into unique
integers before starting to computing the cube. We can use this data conversion step, to get the number of
distinct values, Di for each attribute, Ai of the cube. A starting estimate of the size of group-by A1A2 : : :Ak

consisting of attributes 1 through k can then be taken to be min(D1 �D2 � : : :Dk; D).

17

These initial estimates are then re�ned in the following ways. (1) Once a group-by is computed, then the
estimated size of all group-bys derivable from it can be made to be strictly smaller than this group-by. (2)
Once we have covered two levels we can get better estimates as follows:

jABCDj

jABCj
<=

jABDj

jABj
Hence; jABj <=

jABDjjABCj

jABCDj

PipeHash and PipeSort algorithms can use these revised estimates to change their decisions about what
group-by should be generated from what on the y. We implemented only a limited amount of plan revising.
The PipeSort algorithm before starting a pipeline re-computes the cost of generating it from the parent group-
bys of the previous layer but does not change the selection of group-bys within a pipeline. Similarly, the
PipeHash algorithm re-evaluates the parent group-by for generating the next sub-tree but does not otherwise
change the structure of the sub-tree. We found that the gap in the performance of PipeSort and PipeHash
based on estimates obtained using the above method was within 10% of when the algorithms were provided
with perfect estimates of the size of each group-by.

18

