
Integrating Association Rule Mining with Relational Database

Systems: Alternatives and Implications

Sunita Sarawagi Shiby Thomas � Rakesh Agrawal

sunita@almaden.ibm.com sthomas@cise.ufl.edu ragrawal@almaden.ibm.com

IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

Abstract

Data mining on large data warehouses is becoming increas-
ingly important. In support of this trend, we consider a
spectrum of architectural alternatives for coupling mining
with database systems. These alternatives include: loose-
coupling through a SQL cursor interface; encapsulation of a
mining algorithm in a stored procedure; caching the data to
a �le system on-the-y and mining; tight-coupling using pri-
marily user-de�ned functions; and SQL implementations for
processing in the DBMS. We comprehensively study the op-
tion of expressing the mining algorithm in the form of SQL
queries using Association rule mining as a case in point.
We consider four options in SQL-92 and six options in SQL
enhanced with object-relational extensions (SQL-OR). Our
evaluation of the di�erent architectural alternatives shows
that from a performance perspective, the Cache-Mine option
is superior, although the performance of the SQL-OR option
is within a factor of two. Both the Cache-Mine and the
SQL-OR approaches incur a higher storage penalty than the
loose-coupling approach which performance-wise is a factor
of 3 to 4 worse than Cache-Mine. The SQL-92 implemen-
tations were too slow to qualify as a competitive option.
We also compare these alternatives on the basis of qualita-
tive factors like automatic parallelization, development ease,
portability and inter-operability.

1 Introduction

An ever increasing number of organizations are installing
large data warehouses using relational database technology.
There is a huge demand for mining nuggets of knowledge
from these data warehouses.

The initial research on data mining was concentrated on
de�ning new mining operations and developing algorithms
for them. Most early mining systems were developed largely
on �le systems and specialized data structures and bu�er
management strategies were devised for each algorithm. Cou-
pling with database systems was at best loose, and access

�Current a�liation: Dept. of Computer & Information Science &
Engineering, University of Florida, Gainesville

to data in a DBMS was provided through an ODBC or SQL
cursor interface (e.g. [14, 1, 9, 12]).

Researchers of late have started to focus on issues related
to integrating mining with databases. There have been lan-
guage proposals to extend SQL to support mining operators.
For instance, the query language DMQL [9] extends SQL
with a collection of operators for mining characteristic rules,
discriminant rules, classi�cation rules, association rules, etc.
The M-SQL language [13] extends SQL with a special uni�ed
operator Mine to generate and query a whole set of proposi-
tional rules. Another example is the mine rule [17] operator
for a generalized version of the association rule discovery
problem. Query ocks for association rule mining using a
generate-and-test model has been proposed in [25].

The issue of tightly coupling a mining algorithm with a
relational database system from the systems point of view
was addressed in [5]. This proposal makes use of user-de�ned
functions (UDFs) in SQL statements to selectively push
parts of the computation into the database system. The
objective was to avoid one-at-a-time record retrieval from
the database, saving both the copying and process context
switching costs. The SETM algorithm [10] for �nding as-
sociation rules was expressed in the form of SQL queries.
However, as shown in [3], SETM is not e�cient and there
are no results reported on running it against a relational
DBMS. Recently, the problem of expressing the association
rules algorithm in SQL has been explored in [20]. We discuss
this work later in the paper.

1.1 Goal

This paper is an attempt to understand implications of vari-
ous architectural alternatives for coupling data mining with
relational database systems. In particular, we are interested
in studying how competitive can a mining computation ex-
pressed in SQL be compared to a specialized implementation
of the same mining operation.

There are several potential advantages of a SQL imple-
mentation. One can make use of the database indexing
and query processing capabilities thereby leveraging on more
than a decade of e�ort spent in making these systems robust,
portable, scalable, and concurrent. One can also exploit the
underlying SQL parallelization, particularly in an SMP en-
vironment. The DBMS support for checkpointing and space
management can be valuable for long-running mining algo-
rithms

The architecture we have in mind is schematically shown
in Figure 1. We visualize that the desired mining operation
will be expressed in some extension of SQL or a graphi-

Preprocessor

Optimizer
 +

Extended
SQL-92

SQL-OR

Relational
engine

Object relational
engine

GUI

SQL

Figure 1: SQL architecture for mining in a DBMS

cal language. A preprocessor will generate appropriate SQL
translation for this operation. We consider translations that
can be executed on a SQL-92 [16] relational engine, as well as
translations that require some of the newer object-relational
capabilities being designed for SQL [15]. Speci�cally, we as-
sume availability of blobs, user-de�ned functions, and table
functions [19].

We compare the performance of the above SQL archi-
tecture with the following alternatives:

Read directly from DBMS: Data is read tuple by tuple
from the DBMS to the mining kernel using a cursor inter-
face. Data is never copied to a �le system. We consider
two variations of this approach. One is the loose-coupling
approach where the DBMS runs in a di�erent address space
from the mining process. This is the approach followed by
most existing mining systems. A potential problem with
this approach is the high context switching cost between
the DBMS and the mining process [5]. In spite of the block-
read optimization present in many systems (e.g. Oracle [18],
DB2 [7]) where a block of tuples is read at a time, the perfor-
mance could su�er. The second is the stored-procedure
approach where the mining algorithm is encapsulated as a
stored procedure [7] that runs in the same address space as
the DBMS. The main advantage of both these approaches is
greater programming exibility and no extra storage require-
ment. The mined results are stored back into the DBMS.

Cache-mine: This option is a variation of the Stored-
procedure approach where after reading the entire data once
from the DBMS, the mining algorithm temporarily caches
the relevant data in a lookaside bu�er on a local disk. The
cached data could be transformed to a format that enables
e�cient future accesses. The cached data is discarded when
the execution completes. This method has all the advan-
tages of the stored procedure approach plus it promises to
have better performance. The disadvantage is that it re-
quires additional disk space for caching. Note that the per-
manent data continues to be managed by the DBMS.

User-de�ned function (UDF): The mining algorithm is
expressed as a collection of user-de�ned functions (UDFs) [7]
that are appropriately placed in SQL data scan queries.
Most of the processing happens in the UDF and the DBMS
is used primarily to provide tuples to the UDFs. Little use is
made of the query processing capability of the DBMS. The
UDFs are run in the unfenced mode (same address space as
the database). Such an implementation was presented in [5].
The main attraction of this method over Stored-procedure is
performance since passing tuples to a stored procedure is
slower than passing it to a UDF. Otherwise, the processing
happens in almost the same manner as in the stored proce-
dure case. The main disadvantage is the development cost
since the entire mining algorithm has to be written as UDFs
involving signi�cant code rewrites [5]. This option can be
viewed as an extreme case of the SQL-OR approach where
UDFs do all the processing.

1.2 Methodology

We do both quantitative and qualitative comparisons of the
architectures stated above with respect to the problem of
discovering Association rules [2] against IBM DB2 Universal
Server [11].

For the loose-coupling and Stored-procedure architec-
tures, we use the implementation of the Apriori algorithm [3]
for �nding association rules provided with the IBM data
mining product, Intelligent Miner [14]. For the Cache-Mine
architecture, we used the \space" option provided in Intelli-
gent Miner that caches the data in a binary format after the
�rst pass. For the UDF architecture, we use the UDF im-
plementation of the Apriori algorithm described in [5]. For
the SQL-architecture, we consider two classes of implemen-
tations: one uses only the features supported in SQL-92 and
the other uses object-relational extensions to SQL (hence-
forth referred to as SQL-OR). We consider four di�erent im-
plementations in the �rst case and six in the second. These
implementations di�er in the way they exploit di�erent fea-
tures of SQL. We compare the performance of these di�erent
approaches using four real-life datasets. We also use syn-
thetic datasets at various points to better understand the
behavior of di�erent algorithms.

1.3 Paper Layout

The rest of the paper is organized as follows. In Section
2, we cover background material. In Section 3, we present
the overview of the SQL implementations. In Sections 4
and 5, we elaborate on di�erent ways of doing the support
counting phase of Associations in SQL | Section 4 presents
SQL-92 implementations and Section 5 gives implementa-
tions in SQL-OR. In Section 6 we present a qualitative and
quantitative comparison of the di�erent architectural alter-
natives. We present conclusions in Section 7. This paper is
an abbreviated version of the full paper that appears in [21].

2 Background

2.1 Association Rules

Given a set of transactions, where each transaction is a set of
items, an association rule [2] is an expression X!Y , where
X and Y are sets of items. The intuitive meaning of such a
rule is that the transactions that contain the items in X tend
to also contain the items in Y . An example of such a rule
might be that \30% of transactions that contain beer also
contain diapers; 2% of all transactions contain both these
items". Here 30% is called the con�dence of the rule, and 2%
the support of the rule. The problem of mining association
rules is to �nd all rules that satisfy a user-speci�ed minimum
support and minimum con�dence.

The association rule mining problem can be decomposed
into two subproblems [2]:

� Find all combinations of items, called frequent item-
sets, whose support is greater than minimum support.

� Use the frequent itemsets to generate the desired rules.
The idea is that if, say, ABCD and AB are frequent,
then the rule AB!CD holds if the ratio of support(ABCD)
to support(AB) is at least as large as the minimum
con�dence. Note that the rule will have minimum sup-
port because ABCD is frequent.

The �rst part on generation of frequent itemsets is the
most time-consuming part and we concentrate on this part
in the paper. In [21] we also discuss rule generation.

2.2 Apriori Algorithm

We use the Apriori algorithm [3] as the basis for our presen-
tation. There are recent proposals for improving the Apri-
ori algorithm by reducing the number of data passes [24, 6].
They all have the same basic dataow structure as the Apri-
ori algorithm. Our goal in this work is to understand how
best to integrate this basic structure within a database sys-
tem. In [21], we discuss how our conclusions extrapolate to
these algorithms.

The Apriori algorithm for �nding frequent itemsets makes
multiple passes over the data. In the kth pass it �nds all
itemsets having k items called the k-itemsets. Each pass
consists of two phases. Let Fk represent the set of frequent
k-itemsets, and Ck the set of candidate k-itemsets (poten-
tially frequent itemsets). First, is the candidate gener-
ation phase where the set of all frequent (k�1)-itemsets,
Fk�1, found in the (k�1)th pass, is used to generate the
candidate itemsets Ck . The candidate generation procedure
ensures that Ck is a superset of the set of all frequent k-
itemsets. A specialized in-memory hash-tree data structure
is used to store Ck . Then, data is scanned in the support
counting phase. For each transaction, the candidates in Ck

contained in the transaction are determined using the hash-
tree data structure and their support count is incremented.
At the end of the pass, Ck is examined to determine which
of the candidates are frequent, yielding Fk. The algorithm
terminates when Fk or Ck+1 becomes empty.

2.3 Input format

The transaction table T has two column attributes: transac-
tion identi�er (tid) and item identi�er (item). The number
of items per tid is variable and unknown during table cre-
ation time. Thus, alternatives such as [20], where all items
of a tid appear as di�erent columns of a single tuple, may
not be practical. Often the number of items per transaction
can be more than the maximum number of columns that
the DBMS supports. For instance, for one of our real-life
datasets the maximum number of items per transaction is
872 and for another it is 700. In contrast, the corresponding
average number of items per transaction is only 9.6 and 4.4
respectively.

3 Associations in SQL

In Section 3.1 we present the candidate generation procedure
in SQL and in Section 3.2 we present the support counting
procedure.

3.1 Candidate generation in SQL

Each pass k of the Apriori algorithm �rst generates a can-
didate itemset set Ck from frequent itemsets Fk�1 of the
previous pass.

In the join step, a superset of the candidate itemsets Ck

is generated by joining Fk�1 with itself:

insert into Ck select I1:item1, . . . , I1:itemk�1; I2:itemk�1

from Fk�1 I1; Fk�1 I2
where I1:item1 = I2:item1 and

...
I1:itemk�2 = I2:itemk�2 and
I1:itemk�1 < I2:itemk�1

For example, let F3 be ff1 2 3g, f1 2 4g, f1 3 4g, f1 3 5g, f2
3 4gg. After the join step, C4 will be ff1 2 3 4g, f1 3 4 5gg.

Next, in the prune step, all itemsets c 2 Ck, where some (k�
1)-subset of c is not in Fk�1, are deleted. Continuing with
the example above, the prune step will delete the itemset f1
3 4 5g because the subset f1 4 5g is not in F3. We will then
be left with only f1 2 3 4g in C4.

We can perform the prune step in the same SQL state-
ment as the join step by writing it as a k-way join as shown
in Figure 2. A k-way join is used since for any k-itemset
there are k subsets of length (k�1) for which Fk�1 needs to
be checked for membership. The join predicates on I1 and I2
remain the same. After the join between I1 and I2 we get a k
itemset consisting of (I1:item1; : : : ; I1:itemk�1; I2:itemk�1).
For this itemset, two of its (k � 1)-length subsets are al-
ready known to be frequent since it was generated from
two itemsets in Fk�1. We check the remaining k � 2 sub-
sets using additional joins. The predicates for these joins
are enumerated by skipping one item at a time from the
k-itemset as follows: We �rst skip item1 and check if sub-
set (I1:item2; : : : ; I1:itemk�1; I2:itemk�1) belongs to Fk�1
as shown by the join with I3 in the �gure. In general, for
a join with Ir, we skip item r � 2. We construct a primary
index on (item1; : : : ; itemk�1) of Fk�1 to e�ciently process
these k-way joins using index probes.

Ck need not always be materialized before the counting
phase. Instead, the candidate generation can be pipelined
with the subsequent SQL queries used for support counting.

I1.item_k-2 = I2.item_k-2
I1.item_k-1 < I2.item_k-1

I1.item1 = I2.item1

I1.item_k-1 = I3.item_k-2
I2.item_k-1 = I3.item_k-1

I1.item2 = I3.item1

I1.item_k-1 = Ik.item_k-2
I2.item_k-1 = Ik.item_k-1

I1.item1 = Ik.item1

F_k-1 I1 F_k-1 I2

(Skip item1)

(Skip item_k-2)

F_k-1 I3

F_k-1 Ik

Figure 2: Candidate generation for any k

3.2 Counting support to �nd frequent itemsets

This is the most time-consuming part of the association rules
algorithm. We use the candidate itemsets Ck and the data
table T to count the support of the itemsets in Ck . We
consider two di�erent categories of SQL implementations:

(A) The �rst one is based purely on SQL-92. We discuss
four approaches in this category in Section 4.

(B) The second utilizes object-relational extensions like
UDFs, BLOBs (Binary large objects) and table func-
tions. Table functions [19] are virtual tables associated
with a user de�ned function which generate tuples on
the y. They have pre-de�ned schemas like any other
table. The function associated with a table function
can be implemented as a UDF. Thus, table functions
can be viewed as UDFs that return a collection of tu-
ples instead of scalar values.

We discuss six approaches in this category in Section 5.
UDFs in this approach are light weight and do not re-
quire extensive memory allocations and coding unlike
the UDF architectural option (Section 1.1).

4 Support counting using SQL-92

We studied four approaches in this category { we present
the two better ones here. The other two are discussed in
[21].

4.1 K-way joins

In each pass k, we join the candidate itemsets Ck with k
transaction tables T and follow it up with a group by on
the itemsets as shown in Figure 3. The �gure 3 also shows a
tree diagram of the query. These tree diagrams are not to be
confused with the plan trees that could look quite di�erent.

insert into Fk select item1, . . . itemk, count(*)
from Ck, T t1, . . . T tk
where t1.item = Ck.item1 and

...
tk.item = Ck .itemk and
t1.tid = t2.tid and

...
tk�1.tid = tk.tid

group by item1,item2 . . . itemk

having count(*) > :minsup

Ck.item1 = t1.item

Ck.itemk = tk.item

Group by
item1,....,itemk

having
count(*) > :minsup

t1.tid = t2.tid

t1.tid = tk.tid

T t1 T t2

T tk

Ck

Figure 3: Support Counting by K-way join

This SQL computation, when merged with the candidate
generation step, is similar to the one proposed in [25] as a
possible mechanism to implement query ocks.

For pass-2 we use a special optimization where instead
of materializing C2, we replace it with the 2-way joins be-
tween the F1s as shown in the candidate generation phase
in section 3.1. This saves the cost of materializing C2 and
also provides early �ltering of the T s based on F1 instead
of the larger C2 which is almost a cartesian product of the
F1s. In contrast, for other passes corresponding to k > 2,
Ck could be smaller than Fk�1 because of the prune step.

4.2 Subquery-based

This approach makes use of common pre�xes between the
itemsets in Ck to reduce the amount of work done during
support counting. The support counting phase is split into a
cascade of k subqueries. The l-th subquery Ql (see Figure 4)
�nds all tids that match the distinct itemsets formed by
the �rst l columns of Ck (call it dl). The output of Ql is
joined with T and dl+1 (the distinct itemsets formed by the
�rst l + 1 columns of Ck) to get Ql+1. The �nal output is
obtained by a group-by on the k items to count support as

Records # Trans- # Items Avg.

Datasets in actions in in #items

millions millions thousands

(R) (T) (I) (R/T)
Dataset-A 2.5 0.57 85 4.4
Dataset-B 7.5 2.5 15.8 2.62
Dataset-C 6.6 0.21 15.8 31
Dataset-D 14 1.44 480 9.62

Table 1: Description of di�erent real-life datasets.

above. Note that the �nal \select distinct" operation on the
Ck when l = k is not necessary.

For pass-2 the special optimization of the KwayJoin ap-
proach is used.

insert into Fk select item1; : : : ; itemk, count(*)
from (Subquery Qk) t
group by item1,item2 . . . itemk

having count(*) > :minsup

Subquery Ql (for any l between 1 and k):
select item1; : : : iteml, tid
from T tl, (Subquery Ql�1) as rl�1,
(select distinct item1 : : : iteml from Ck) as dl

where rl�1:item1 = dl:item1 and : : : and
rl�1:iteml�1 = dl:iteml�1and
rl�1:tid = tl:tid and
tl:item = dl:iteml

Subquery Q0: No subquery Q0.

item1,...,iteml

Ck

r_l-1.item1 = dl.item1

r_l-1.item_l-1 = dl.item_l-1

select distinct

Subquery Q_l

dl
T tl

item1,...,iteml, tid

tl.item = dl.iteml
tl.item = dl.iteml

Subquery Q_l-1

r_l-1

Tree diagram for SubqueryQl

Figure 4: Support counting using subqueries

4.3 Performance comparison of SQL-92 approaches

We now briey compare the di�erent SQL-92 approaches;
detailed results are available in [21].

Our experiments were performed on Version 5 of IBM
DB2 Universal Server installed on a RS/6000 Model 140
with a 200 MHz CPU, 256 MB main memory and a 9 GB
disk with a measured transfer rate of 8 MB/sec.

We selected four real-life datasets obtained from mail-
order companies and retail stores for the experiments. These
datasets di�er in the values of parameters like the number
of (tid,item) pairs, number of transactions (tids), number
of items and the average number of items per transaction.
Table 1 summarizes characteristics of these datasets.

We found that the best SQL-92 approach was the Sub-
query approach, which was often more than an order of
magnitude better than the other three approaches. How-
ever, this approach was comparable to the Loose-coupling
approach only in some cases whereas for several others it
did not complete even after taking ten times more time than
the Loose-coupling approach.

The important conclusion we drew from this study, there-
fore is that implementations based on pure SQL-92 are too
slow to be considered an alternative to the existing Loose-
coupling approach.

5 Support counting using SQL with object-relational ex-
tensions

In this section, we study approaches that use object-relational
features in SQL to improve performance. We �rst consider
an approach we call GatherJoin and its three variants in Sec-
tion 5.1. Next we present a very di�erent approach called
Vertical in Section 5.2. We do not discuss the sixth ap-
proach called SBF based on SQL-bodied functions because
of its inferior performance (see [21]). For each approach, we
also outline a cost-based analysis of the execution time to
choose between these di�erent approaches. In Section 5.3
we present performance comparisons.

5.1 GatherJoin

The GatherJoin approach (see Figure 5) generates all possi-
ble k-item combinations of items contained in a transaction,
joins them with the candidate table Ck, and counts the sup-
port of the itemsets by grouping the join result. It uses
two table functions Gather and Comb-K. The data table T
is scanned in the (tid, item) order and passed to the table
function Gather, which collects all the items of a transac-
tion in memory and outputs a record for each transaction.
Each record consists of two attributes: the tid and item-list
which is a collection of all items in a �eld of type VARCHAR
or BLOB. The output of Gather is passed to another ta-
ble function Comb-K which returns all k-item combinations
formed out of the items of a transaction. A record output
by Comb-K has k attributes T itm1; : : : ; T itmk, which can
be used to probe into the Ck table. An index is constructed
on all the items of Ck to make the probe e�cient.

This approach is analogous to the KwayJoin approach ex-
cept that we have replaced the k-way self join of T with the
table functions Gather and Comb-K. These table functions
are easy to code and do not require a large amount of mem-
ory. It is also possible to merge them into a single table
function GatherComb-K, which is what we did in our imple-
mentation. Note that the Gather function is not required
when the data is already in a horizontal format where each
tid is followed by a collection of all its items.

Special pass 2 optimization: For k = 2, the 2-candidate
set C2 is simply a join of F1 with itself. Therefore, we can
optimize the pass 2 by replacing the join with C2 by a join
with F1 before the table function (see Figure 6). The table
function now gets only frequent items and generates signi�-
cantly fewer 2-item combinations. We apply this optimiza-
tion to other passes too. However, unlike pass 2 we still have
to do the �nal join with Ck and therefore the bene�t is not
as signi�cant.

insert into Fk select item1; : : : ; itemk, count(*)
from Ck,

(select t2:T itm1; : : : ; t2:T itmk from T,
table (Gather(T.tid, T.item)) as t1,
table (Comb-K(t1.tid, t1.item-list)) as t2)

where t2:T itm1 = Ck :item1 and
...

t2:T itmk = Ck:itemk

group by Ck :item1; : : : ; Ck:itemk

having count(*) > :minsup

Group by
item1,....,itemk

having
count(*) > :minsup

Table function
Gather

Table function
Comb-K

T

Order by
tid, item

t2.T_itmk = Ck.itemk

t2.T_itm1 = Ck.item1

Ck
t2

Figure 5: Support Counting by GatherJoin

Table function
GatherComb-K

having
count(*) > :minsup

T F1

Group by
tt2.T_itm1, tt2.T_itm2

T.item = F1.item1

tt2

Figure 6: Support Counting by GatherJoin in the second
pass

5.1.1 Variations of GatherJoin approach

GatherCount: One variation of the GatherJoin approach
for pass two is the GatherCount approach where we per-
form the group-by inside the table function GatherComb-2.
We will refer to this extended table function as Gather-Cnt.
The candidate 2-itemset C2 is represented as a two dimen-
sional array (as suggested in [3]) inside function Gather-Cnt.
Instead of outputting the 2-item combinations, the function
uses the combinations to directly update support counts in
memory and outputs only the frequent 2-itemsets, F2 and
their support after the last transaction.

The attraction of this otion is the absence of the outer
grouping. The UDF code is small since it only needs to
maintain a 2D array. We could apply the same trick for sub-
sequent passes but the coding becomes considerably more
complicated because of the need to maintain hash-tables to
index the Cks. The disadvantage of this approach is that it
can require a large amount of memory to store C2. If enough
memory is not available, C2 needs to be partitioned and the
process has to be repeated for each partition. Another prob-
lem with this approach is that it cannot be automatically
parallelized.

GatherPrune: A problem with theGatherJoin approach
is the high cost of joining the large number of item combina-
tions with Ck. We can push the join with Ck inside the table
function and thus reduce the number of such combinations.
Ck is converted to a BLOB and passed as an argument to
the table function.

The cost of passing the BLOB for every tuple of R can
be high. In general, we can reduce the parameter passing
cost by using a smaller Blob that only approximates the real
Ck . The trade-o� is increased cost for other parts notably
grouping because not as many combinations are �ltered. A
problem with this approach is the increased coding complex-
ity of the table function.

Horizontal: This is another variation of GatherJoin that
�rst uses the Gather function to transform the data to the
horizontal format but is otherwise similar to the Gather-
Join approach. Rajamani et al. [20] propose �nding associa-
tions using a similar approach augmented with some pruning
based on a variation of the GatherPrune approach. Their re-
sults assume that the data is already in a horizontal format
which is often not true in practice. They report that their
SQL implementation is two to six times slower than a UDF
implementation.

R number of records in the input transaction
table

T number of transactions
N avg. number of items per transaction = R

T

F1 number of frequent items
S(C) sum of support of each itemset in set C
Rf number of records out of R involving

frequent items = S(F1)
Nf average number of frequent items per

transaction =
Rf

T

Ck number of candidate k-itemsets
C(N;k) number of combinations of size k possible

out of a set of size n: = n!
k!(n�k)!

sk cost of generating a k item combination
using table function Comb-k

group(n;m) cost of grouping n records out of which m
are distinct

join(n;m; r) cost of joining two relations of size n and m
to get a result of size r

blob(n) cost of passing a BLOB of size n integers as
an argument

Table 2: Notations used for cost analysis of di�erent ap-
proaches

5.1.2 Cost analysis of GatherJoin and its variants

The relative performance of these variants depends on a
number of data characteristics like the number of items, to-
tal number of transactions, average length of a transaction
etc. We express the costs in each pass in terms of parame-
ters that are known or can be estimated after the candidate
generation step of each pass. The purpose of this analysis
is to help us choose between the di�erent options. There-
fore, instead of including all I/O and CPU costs, we include
only those terms that help us distinguish between di�erent
options. We use the notations of Table 2 in the cost analysis.

The cost of GatherJoin includes the cost of generating k-
item combinations, joining with Ck and grouping to count

the support. The number of k-item combinations generated,
Tk is C(N;k)�T . Join with Ck �lters out the non-candidate
item combinations. The size of the join result is the sum of
the support of all the candidates denoted by S(Ck). The
actual value of the support of a candidate itemset will be
known only after the support counting phase. However, we
approximate it to the minimum of the support of all its
(k � 1)-subsets in Fk�1. The total cost of the GatherJoin
approach is:

Tk � sk + join(Tk; Ck ; S(Ck)) + group(S(Ck); Ck);

where Tk = C(N;k) � T

The above cost formula needs to be modi�ed to reect
the special optimization of joining with F1 to consider only
frequent items. We need a new term join(R;F1;Rf) and
need to change the formula for Tk to include only frequent
items Nf instead of N .

For the second pass, we do not need the outer join with
Ck . The total cost of GatherJoin in the second pass is:

join(R;F1;Rf) + T2 � s2 + group(T2; C2);

where T2 = C(Nf ; 2) � T �
N2
f � T

2

Cost of GatherCount in the second pass is similar to that
for basic GatherJoin except for the �nal grouping cost:

join(R;F1;Rf) + group internal(T2; C2) + F2 � s2

In this formula, \group internal" denotes the cost of doing
the support counting inside the table function.

Cost formulas for the GatherPrune and Horizontal ap-
proaches can be derived similarly and appear in [21].

5.2 Vertical

We �rst transform the data table into a vertical format by
creating for each item a BLOB containing all tids that con-
tain that item (Tid-list creation phase) and then count the
support of itemsets by merging together these tid-lists (sup-
port counting phase). This approach is similar to the ap-
proaches in [26]. For creating the Tid-lists we use a table
function Gather. This is the same as the Gather function
in GatherJoin except that we create the tid-list for each
frequent item. The data table T is scanned in the (item,tid)
order and passed to the function Gather. The function col-
lects the tids of all tuples of T with the same item in memory
and outputs a (item, tid-list) tuple for items that meet the
minimum support criterion. The tid-lists are represented as
BLOBs and stored in a new TidTable with attributes (item,
tid-list).

In the support counting phase, for each itemset in Ck we
want to collect the tid-lists of all k items and use a UDF to
count the number of tids in the intersection of these k lists.
The tids are in the same sorted order in all the tid-lists and
therefore the intersection can be done e�ciently by a single
pass of the k lists. This step can be improved by decompos-
ing the intersect operation to share these operations across
itemsets having common pre�xes as follows.

We �rst select distinct (item1; item2) pairs from Ck. For
each distinct pair we �rst perform the intersect operation to
get a new result-tidlist, then �nd distinct triples (item1; item2;
item3) from Ck with the same �rst two items, intersect
result-tidlist with tid-list for item3 for each triple and con-
tinue with item4 and so on until all k tid-lists per itemset

are intersected. This approach is analogous to the Subquery
approach presented for SQL-92.

The above sequence of operations can be written as a
single SQL query for any k as shown in Figure 7. The �nal
intersect operation can be merged with the count operation
to return a count instead of the tid-list | we do not show
this optimization in the query of Figure 7 for simplicity.

insert into Fk select item1; : : : ; itemk, count(tid-list) as cnt
from (Subquery Qk) t where cnt > :minsup

Subquery Ql (for any l between 2 and k):
select item1; : : : iteml,
Intersect(rl�1.tid-list,tl .tid-list) as tid-list

from TidTable tl, (Subquery Ql�1) as rl�1,
(select distinct item1 : : : iteml from Ck) as dl

where rl�1:item1 = dl:item1 and : : : and
rl�1:iteml�1 = dl:iteml�1and
tl:item = dl:iteml

Subquery Q1: (select * from TidTable)

item1,...,iteml

Ck

r_l-1.item1 = dl.item1

r_l-1.item_l-1 = dl.item_l-1

select distinct

Subquery Q_l

dl
T tl

item1,...,iteml, tid

tl.item = dl.iteml
tl.item = dl.iteml

Subquery Q_l-1

r_l-1

Tree diagram for Subquery Ql

Figure 7: Support counting using UDF

Special pass 2 optimization: For pass 2 we need not
generate C2 and join the TidTables with C2. Instead, we
perform a self-join on the TidTable using predicate t1:item <
t2:item.

insert into Fk select t1:item; t2:item, cnt
from (select item1; item2,

CountIntersect(t1.tid-list, t2.tid-list) as cnt
from TidTable t1; TidTable t2
where t1:item < t2:item) as t

where cnt > :minsup

5.2.1 Cost analysis

The cost of the Vertical approach during support counting is
dominated by the cost of invoking the UDFs and intersecting
the tid-lists. The UDF is �rst called for each distinct item
pair in Ck , then for each distinct item triple and so on. Let
dkj be the number of distinct j item tuples in Ck Then the

number of UDF invocations is
Pk

j=2
dkj . In each invocation

two BLOBs of tid-list are passed as arguments. The UDF
intersects the tid-lists by a merge pass and hence the cost is
proportional to 2 * average length of a tid-list. The average

length of a tid-list can be approximated to
Rf

F1
. Note that

with each intersect the tid-list keeps shrinking. However, we
ignore such e�ects for simplicity.

The total cost of the Vertical approach is:

(

kX
j=2

dkj) �
�
2 � Blob(

Rf

F1
) + Intersect(

2Rf

F1
)
�

In the above formula Intersect(n) denotes the cost of
intersecting two tid-lists with a combined size of n. We
are not including the join costs in this analysis because it
accounted for only a small fraction of the total cost.

5.3 Performance comparison of SQL-OR approaches

We studied the performance of six SQL-OR approaches us-
ing the datasets summarized in Table 1. Figure 8 shows the
results for only four approaches: GatherJoin, GatherCount,
GatherPrune and Vertical. For the other two approaches
(Horizontal and SBF) the running times were so large that
we had to abort the runs in many cases. The reason why the
Horizontal approach was signi�cantly worse than the Gath-
erJoin approach was the time to transform the data to the
horizontal format.

We �rst concentrate on the overall comparison between
the di�erent approaches. Then we will compare the ap-
proaches based on how they perform in each pass of the
algorithm.

The Vertical approach has the best overall performance
and it is sometimes more than an order of magnitude better
than the other three approaches.

The majority of the time of the Vertical approach is spent
in transforming the data to the Vertical format in most cases
(shown as \prep" in �gure 8). The vertical representation is
like an index on the item attribute. If we think of this time
as a one-time activity like index building then performance
looks even better. The time to transform the data to the
Vertical format was much smaller than the time for the hori-
zontal format although both formats write almost the same
amount of data. The reason is the di�erence in the number
of records written. The number of frequent items is often
two to three orders of magnitude smaller than the number
of transactions.

Between GatherJoin and GatherPrune, neither strictly dom-
inates the other. The special pass-2 optimization in Gather-
Join had a big impact on performance. With this optimiza-
tion, for Dataset-Bwith support 0.1%, the running time for
pass 2 was reduced from 5.2 hours to 10 minutes.

When we compare these approaches based on time spent
in each pass no single approach emerges as \the best" for all
passes of the with datasets.

For pass three onwards, Vertical is often two or more or-
ders of magnitude better than the other approaches. For
higher passes, the performance degrades dramatically for
GatherJoin, because the table function Gather-Comb-K gen-
erates a large number of combinations. GatherPrune is bet-
ter than GatherJoin for third and later passes. For pass 2
GatherPrune is worse because the overhead of passing a large
object as an argument dominates cost.

The Vertical approach sometimes spends too much time
in the second pass. In some of these cases the GatherJoin
approach was better in the second pass (for instance for low
support values of Dataset-B) whereas in other cases (for
instance, Dataset-C with minimum support 0.25%) Gather-
Count was the only good option. In the latter case, both
GatherPrune and GatherJoin did not complete after more
than six hours for pass 2. Further, they caused a storage
overow error because of the large size of the intermediate
results to be sorted. We had to divide the dataset into four

Data set- A

0

500

1000

1500

2000

2500

Vert
Gpru

n
Gjoin Gcnt Vert

Gpru
n

Gjoin Gcnt Vert
Gpru

n
Gjoin Gcnt

Tim
e in

 se
c

Prep Pass 1 Pass 2 Pass 3

Support--> 0.5% 0.35 0.20%

Data set- B

0

2000

4000

6000

8000

10000

12000

14000

Vert
Gprun

Gjoin
Gcnt

Vert
Gprun

Gjoin
Gcnt

Vert
Gprun

Gjoin
Gcnt

Tim
e in

 se
c

Prep Pass 1 Pass 2 Pass 3 Pass 4

Support --> 0.10% 0.03% 0.01%

Data set- C

0

2000

4000

6000

8000

10000

12000

Vert
Gprun

Gjoin
Gcnt

Vert
Gprun

Gjoin
Gcnt

Vert
Gprun

Gjoin
Gcnt

Tim
e in

 se
c

Prep Pass 1 Pass 2 Pass 3 Pass 4

Support --> 2.0% 1.0% 0.25%

Data set- D

0

2000

4000

6000

8000

10000

12000

14000

Vert
Gjoin

Gcnt
Vert

Gjoin
Gcnt

Vert
Gjoin

Gcnt

Tim
e in

 se
c

Prep Pass 1 Pass 2 Pass 3 Pass 4

Support --> 0.20% 0.07% 0.02%

Figure 8: Comparison of four SQL-OR approaches: Vertical, GatherPrune, GatherJoin and GatherCount on four datasets for
di�erent support values. The time taken is broken down by each pass and an initial \prep" stage where any one-time data
transformation cost is included.

equal parts and ran the second pass independently on each
partition to avoid this problem.

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

Average transaction length

Tim
e i

n s
ec

Vertical Gjoin

Figure 9: E�ect of increasing transaction length

Two factors that a�ect the choice amongst the Vertical,
GatherJoin and GatherCount approaches in di�erent passes
and pass 2 in particular are: number of frequent items (F1)
and the average number of frequent items per transaction
(Nf). From Figure 8 we notice that as the value of the sup-
port is decreased for each dataset causing the size of F1 to
increase, the performance of pass 2 of the Vertical approach
degrades rapidly. This trend is also clear from our cost for-
mulae. The cost of the Vertical approach increases quadrat-
ically with F1. GatherJoin depends more critically on the
number of frequent items per transaction. For Dataset-B
even when the size of F1 increases by a factor of 10, the value
of Nf remains close to 2, therefore the time taken by Gath-

erJoin does not increase as much. However, for Dataset-C
the size of Nf increases from 3.2 to 10 as the support is de-
creased from 2.0% to 0.25% causing GatherJoin to deterio-
rate rapidly. From the cost formula for GatherJoin we notice
that the total time for pass 2 increases almost quadratically
with Nf .

We validated this observation further by running exper-
iments on synthetic datasets for varying values of the num-
ber of frequent items per transaction. We used the synthetic
dataset generator described in [3] for this purpose. We var-
ied the transaction length, the number of transactions and
the support values while keeping the total number of records
and the number of frequent items �xed. In Figure 9 we show
the total time spent in pass 2 of the Vertical and GatherJoin
approaches. As the number of items per transaction (trans-
action length) increases, the cost of Vertical remains almost
unchanged whereas the cost of GatherJoin increases.

5.4 Final hybrid approach

The previous performance section helps us draw the follow-
ing conclusions: Overall, the Vertical approach is the best
option especially for higher passes. When the size of the
candidate itemsets is too large, the performance of the Ver-
tical approach could su�er. In such cases, GatherJoin is a
good option as long as the number of frequent items per
transaction (Nf) is not too large. When Nf is large Gather-
Count may be the only good option even though it may not
easily parallelize.

The hybrid scheme chooses the best of the three ap-
proaches GatherJoin, GatherCount and Vertical for each pass
based on the cost estimates outlined in Sections 5.1.2 and

Data set- A

0

100

200

300

400

500

600

700

800

Cache
Sproc

UDF
SQL

Cache
Sproc

UDF
SQL

Cache
Sproc

UDF
SQL

Tim
e in

 se
c

Pass-1 Pass-2 Pass-3

Support--> 0.50% 0.35% 0.20%

Data set- B

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Cache
Sproc

UDF
SQL

Cache
Sproc

UDF
SQL

Cache
Sproc

UDF
SQL

Tim
e in

 se
c

Pass-1 Pass 2 Pass 3 Pass 4

SUPPORT--> 0.1% 0.03% 0.01%

Data set- C

0

500

1000

1500

2000

2500

3000

3500

4000

Cache
Sproc UDF

SQL
Cache

Sproc

UDF
SQL

Cache
Sproc

UDF

SQL

Tim
e in

 se
c

Pass 1 Pass 2 Pass 3 Pass 4

Support--> 2.0% 1.0% 0.25%

Data set- D

0

2000

4000

6000

8000

10000

12000

Cach
e

Spro
c

UDF
SQL

Cach
e

Spro
c

UDF
SQL

Cach
e

Spro
c

UDF
SQL

Tim
e in

 se
c

Pass 1 Pass 2 Pass 3 Pass 4

Support % --> 0.2% 0.07% 0.02%

Figure 10: Comparison of four architectures: Cache-Mine, Stored-procedure, UDF and SQL-OR on four real-life datasets. Loose-
coupling is similar to Stored-procedure. For each dataset three di�erent support values are used. The total time is broken
down by the time spent in each pass.

5.2.1. The parameter values used for the estimation are
available at the end of the previous pass. In Section 6 we
plot the �nal running time for the di�erent datasets based
on this hybrid approach.

6 Architecture comparisons

In this section our goal is to compare the �ve alternatives:
Loose-coupling, Stored-procedure, Cache-Mine, UDF, and the
best SQL implementation.

The Loose-coupling, Stored-procedure and Cache-Mine im-
plementations are derived from IBM's Intelligent Miner [14]
code as discussed in Section 1.2. The only di�erence between
Loose-coupling and Stored-procedure approaches is that the
former in run in a seperate address space whereas the latter
is run in the same address space as the database server. This
di�erence did not impact performance much on DB2, there-
fore we will often be basing our comparisons on the Stored-
procedure approach. For the UDF-architecture, we use the
UDF implementation of the Apriori algorithm described in
[5]. In this implementation, �rst a UDF is used to initial-
ize state and allocate memory for candidate itemsets. Next,
for each pass a collection of UDFs are used for generating
candidates, counting support, and checking for termination.
These UDFs access the initially allocated memory, address
of which is passed around in BLOBs. Candidate generation
creates the in-memory hash-trees of candidates. This hap-
pens entirely in the UDF without any involvement of the
DBMS. During support counting, the data table is scanned
sequentially and for each tuple a UDF is used for updating
the counts on the memory resident hashtree.

6.1 Timing comparison

In Figure 10, we show the performance of Cache-Mine, Stored-
procedure, UDF and the hybrid SQL-OR implementation for
the datasets in Table 1. We do not show the times for the
Loose-coupling option because its performance was very close
to the Stored-procedure option.

We can make the following observations:

� Cache-Mine has the best or close to the best perfor-
mance in all cases. 80-90% of its total time is spent in
the �rst pass where data is accessed from the DBMS
and cached in the �le system. Compared to the SQL
approach this approach is a factor of 0.8 to 2 times
faster.

� The Stored-procedure approach is the worst. The dif-
ference between Cache-Mine and Stored-procedure is di-
rectly related to the number of passes. For instance,
for Dataset-A the number of passes increases from two
to three when decreasing support from 0.5% to 0.35%
causing the time taken to increase from two to three
times. The time spent in each pass for Stored-procedure
is the same except when the algorithm makes multiple
passes over the data since all candidates could not �t
in memory together. This happens for the lowest sup-
port values of Dataset-B, Dataset-C and Dataset-D.
Time taken by Stored-procedure can be expressed ap-
proximately as number of passes times time taken by
Cache-Mine.

� UDF is similar to Stored-procedure. The only di�erence
is that the time per pass decreases by 30-50% for UDF

because of closer coupling with the database.

� The SQL approach comes second in performance af-
ter the Cache-Mine approach for low support values
and is even somewhat better for high support values.
The cost of converting the data to the vertical for-
mat for SQL is typically lower than the cost of trans-
forming data to binary format outside the DBMS for
Cache-Mine. However, after the initial transformation
subsequent passes take negligible time for Cache-Mine.
For the second pass SQL takes signi�cantly more time
than Cache-Mine particularly when we decrease sup-
port. For subsequent passes even the SQL approach
does not spend too much time. Therefore, the di�er-
ence between Cache-Mine and SQL is not very sensi-
tive to the number of passes because both approaches
spend negligible time in higher passes.

The SQL approach is 1.8 to 3 times better than Stored-
procedure or Loose-coupling approach. As we decreased
the support value so that the number of passes over the
dataset increases, the gap widens.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000

Number of transactions in 1000s

Tim
e in

 se
c

Cache Sproc SQL

Figure 11: Scale-up with increasing number of transactions

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

Average transaction length

Tim
e in

 se
c

Cache Sproc SQL

Figure 12: Scale-up with increasing transaction length

6.1.1 Scale-up experiment

Our experiments with the four real-life datasets above has
shown the scaling property of the di�erent approaches with
decreasing support value and increasing number of frequent
itemsets. We experiment with synthetic datasets to study
other forms of scaling: increasing number of transactions
and increasing average length of transactions. Figure 11
shows how Stored-procedure, Cache-Mine and SQL scale with
increasing number of transactions. UDF and Loose-coupling

have similar scale-up behavior as Stored-procedure, therefore
we do not show these approaches in the �gure. We used a
dataset with 10 average number of items per transaction,
100 thousand total items and a default pattern length (de-
�ned in [3]) of 4. Thus, the size of the dataset is 10 times
the number of transactions. As the number of transactions
is increased from 10K to 3000K the time taken increases pro-
portionately. The largest frequent itemset was 5 long. This
explains the �ve fold di�erence in performance between the
Stored-procedure and the Cache-Mine approach. Figure 12
shows the scaling when the transaction length changes from
3 to 50 while keeping the number of transactions �xed at
100K. All three approaches scale linearly with increasing
transaction length.

6.2 Space overhead of di�erent approaches

We summarize the space required for di�erent options. We
assume that the tids and items are integers. The space re-
quirements for UDF and Loose-coupling is the same as that
for Stored-procedure which in turn is less than the space
needed by the Cache-Mine and SQL approaches. The Cache-
Mine and SQL approaches have comparable storage over-
heads. For Stored-procedure and UDF we do not need any
extra storage for caching. However, all three options Cache-
Mine, Stored-procedure and UDF require data in each pass
to be grouped on the tid. In a relational DBMS we cannot
assume any order on the physical layout of a table, unlike in
a �le system. Therefore, we need either an index on the data
table or need to sort the table every time to ensure a par-
ticular order. Let R denote the total number of (tid,item)
pairs in the data table. Either option has a space overhead
of 2�R integers. The Cache-Mine approach caches the data
in an alternative binary format where each tid is followed by
all the items it contains. Thus, the size of the cached data
in Cache-Mine is at most: R + T integers where T is the
number of transactions. For SQL we use the hybrid Vertical
option. This requires creation of an initial TidTable of size
at most I + R where I is the number of items. Note that
this is slightly less than the cache required by the Cache-
Mine approach. The SQL approach needs to sort data in
pass 1 in all cases and pass 2 in some cases where we used
the GatherJoin approach instead of the Vertical approach.

In summary, the UDF and Stored-procedure approaches
require the least amount of space followed by the Cache-
Mine and the SQL approaches which require roughly as much
extra storage as the data. When the item-ids or tids are
character strings instead of integers, the extra space needed
by Cache-Mine and SQL is a much smaller fraction of the
total data size because before caching we always convert
item-ids to their compact integer representation and store
in binary format. Details on how to do this conversion for
SQL is presented in [21].

6.3 Summary of comparison between di�erent architec-
tures

We present a summary of the pros and cons of the di�erent
architectures on each of the following yardsticks: (a) perfor-
mance (execution time); (b) storage overhead; (c) potential
for automatic parallelization; (d) development and mainte-
nance ease; (e) portability (f) inter-operability.

In terms of performance, the Cache-Mine approach is the
best option. The SQL approach is a close second | it is
always within a factor of two of Cache-Mine for all of our
experiments and is sometimes even slightly better. The UDF
approach is better than the Stored-procedure approach by

30 to 50%. Between Stored-procedure and Cache-Mine, the
performance di�erence is a function of the number of passes
made on the data | if we make four passes of the data the
Stored-procedure approach is four times slower than Cache-
Mine. Some of the recent proposals [24, 6] that attempt
to minimize the number of data passes to 2 or 3 might be
useful in reducing the gap between the Cache-Mine and the
Stored-procedure approach.

In terms of space requirements, the Cache-Mine and the
SQL approach loose to the UDF or the Stored-procedure ap-
proach. The Cache-Mine and SQL approaches have similar
storage requirements.

The SQL implementation has the potential for automatic
parallelization particularly on a SMP machine. Paralleliza-
tion could come for free for SQL-92 queries. Unfortunately,
the SQL-92 option is too slow to be a candidate for par-
allelization. The stumbling block for automatic paralleliza-
tion using SQL-OR could be queries involving UDFs that
use scratch pads. The only such function in our queries is
the Gather table function. This function essentially imple-
ments a user de�ned aggregate, and would have been easy
to parallelize if the DBMS provided support for user de�ned
aggregates or allowed explicit control from the application
about how to partition the data amongst di�erent parallel
instances of the function. On a MPP machine, although one
could rely on the DBMS to come up with a data partition-
ing strategy, it might be possible to better tune performance
if the application could provide hints about the best parti-
tioning [4]. Further experiments are required to assess how
the performance of these automatic parallelizations would
compare with algorithm-speci�c parallelizations (e.g [4]).

The development time and code size using SQL could
be shorter if one can get e�cient implementations out of
expressing the mining algorithms declaratively using a few
SQL statements. Thus, one can avoid writing and debugging
code for memory management, indexing and space man-
agement all of which are already provided in a database
system (Note that these same code reuse advantages can
be obtained from a well-planned library of mining building
blocks). However, there are some detractors to easy de-
velopment using the SQL alternative. First, any attached
UDF code will be harder to debug than stand-alone C++
code due to lack of debugging tools. Second, stand-alone
code can be debugged and tested faster when run against
at �le data. Running against at �les is typically a fac-
tor of �ve to ten faster compared to running against data
stored in DBMS tables. Finally, some mining algorithms
(e.g. neural-net based) might be too awkward to express in
SQL.

The ease of porting of the SQL alternative depends on
the kind of SQL used. Within the same DBMS, porting
from one OS platform to another requires porting only the
small UDF code and hence is easy. In contrast the Stored-
procedure and Cache-Mine alternatives require porting larger
lines of code. Porting from one DBMS to another could
get hard for SQL approach, if non-standard DBMS-speci�c
features are used. For instance, our preferred SQL imple-
mentation relies on the availability of DB2's table functions,
for which the interface is still not standardized across other
major DBMS vendors. Also, if di�erent features have dif-
ferent performance characteristics on di�erent database sys-
tems, considerable tuning would be required. In contrast,
the Stored-procedure and Cache-Mine approach are not tied
to any DBMS speci�c features. The UDF implementation
has the worst of both worlds | it is large and is tied to a
DBMS.

One attraction of SQL implementation is inter-operability
and usage exibility. The adhoc querying support provided
by the DBMS enables exible usage and exposes potential
for pipelining the input and output operators of the min-
ing process with other operators in the DBMS. However, to
exploit this feature one needs to implement the mining op-
erators inside the DBMS. This would require major rework
in existing database systems. The SQL approach presented
here is based on embedded SQL and as such cannot pro-
vide operator pipelining and inter-operability. Queries on
the mined result is possible with all four alternatives as long
as the mined results are stored back in the DBMS.

7 Conclusion and future work

We explored various architectural alternatives for integrat-
ing mining with a relational database system. As an initial
step in that direction we studied the association rules algo-
rithms with the twin goals of �nding the trade-o�s between
architectural options and the extensions needed in a DBMS
to e�ciently support mining. We experimented with di�er-
ent ways of implementing the association rules mining algo-
rithm in SQL to �nd if it is at all possible to get competitive
performance out of SQL implementations.

We considered two categories of SQL implementations.
First, we experimented with four di�erent implementations
based purely on SQL-92. Experiments with real-life datasets
showed that it is not possible to get good performance out of
pure SQL based approaches alone. We next experimented
with a collection of approaches that made use of the new
object-relational extensions like UDFs, BLOBs, Table func-
tions etc. With this extended SQL we got orders of magni-
tude improvement over the SQL-92 based-implementations.

We compared the SQL implementation with di�erent ar-
chitectural alternatives. We concluded that based just on
performance the Cache-Mine approach is the winner. A close
second is the SQL-OR approach that was sometimes slightly
better than Cache-Mine and was never worse than a factor
of two on our datasets. Both these approaches require ad-
ditional storage for caching, however. The Stored-procedure
approach does not require any extra space (except possibly
for initially sorting the data in the DBMS) and can perhaps
be made to be within a factor of two to three of Cache-Mine
with the recent algorithms [24, 6]. The UDF approach is a
factor of 0.3 to 0.5 faster than Stored-procedure but is sig-
ni�cantly harder to code. The SQL approach o�ers some
secondary advantages like easier development and mainte-
nance and potential for automatic parallelization. However,
it might not be as portable as the Cache-Mine approach
across di�erent database management systems.

The work presented in this paper points to several direc-
tions for future research. A natural next step is to experi-
ment with other kinds of mining operations (e.g. clustering
and classi�cation [8]) to verify if our conclusions about as-
sociations hold for these other cases too. We experimented
with generalized association rules [22] and sequential pat-
terns [23] problems and found similar results. In some ways
associations is the easiest to integrate as the frequent item-
sets can be viewed as generalized group-bys. Another useful
direction is to explore what kind of a support is needed for
answering short, interactive, adhoc queries involving a mix
of mining and relational operations. Howmuch can we lever-
age from existing relational engines? What data model and
language extensions are needed? Some of these questions are
orthogonal to whether the bulky mining operations are im-
plemented using SQL or not. Nevertheless, these are impor-

tant in providing analysts with a well-integrated platform
where mining and relational operations can be inter-mixed
in exible ways.

Acknowledgements We wish to thank Cli� Leung, Guy
Lohman, Eric Louie, Hamid Pirahesh, Eugene Shekita, Dave
Simmens, Amit Somani, Ramakrishnan Srikant, George Wil-
son and Swati Vora for useful discussions and help with DB2.

References

[1] R. Agrawal, A. Arning, T. Bollinger, M. Mehta,
J. Shafer, and R. Srikant. The Quest Data Mining Sys-
tem. In Proc. of the 2nd Int'l Conference on Knowl-
edge Discovery in Databases and Data Mining, Port-
land, Oregon, August 1996.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In Proc. of the ACM SIGMOD Conference on Manage-
ment of Data, pages 207{216, Washington, D.C., May
1993.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. I. Verkamo. Fast Discovery of Association Rules.
In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Dis-
covery and Data Mining, chapter 12, pages 307{328.
AAAI/MIT Press, 1996.

[4] R. Agrawal and J. Shafer. Parallel mining of associa-
tion rules. IEEE Transactions on Knowledge and Data
Engineering, 8(6), December 1996.

[5] R. Agrawal and K. Shim. Developing tightly-coupled
data mining applications on a relational database sys-
tem. In Proc. of the 2nd Int'l Conference on Knowl-
edge Discovery in Databases and Data Mining, Port-
land, Oregon, August 1996.

[6] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dy-
namic itemset counting and implication rules for mar-
ket basket data. In Proc. of the ACM SIGMOD Con-
ference on Management of Data, May 1997.

[7] D. Chamberlin. Using the New DB2: IBM's Object-
Relational Database System. Morgan Kaufmann, 1996.

[8] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors. Advances in Knowledge Dis-
covery and Data Mining. AAAI/MIT Press, 1996.

[9] J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane.
DMQL: A data mining query language for relational
datbases. In Proc. of the 1996 SIGMOD workshop on
research issues on data mining and knowledge discov-
ery, Montreal, Canada, May 1996.

[10] M. Houtsma and A. Swami. Set-oriented mining of asso-
ciation rules. In Int'l Conference on Data Engineering,
Taipei, Taiwan, March 1995.

[11] IBM Corporation. DB2 Universal Database Application
programming guide Version 5, 1997.

[12] T. Imielinski and H. Mannila. A database perspective
on knowledge discovery. Communication of the ACM,
39(11):58{64, Nov 1996.

[13] T. Imielinski, A. Virmani, and A. Abdulghani. Dis-
covery Board Application Programming Interface and
Query Language for Database Mining. In Proc. of the
2nd Int'l Conference on Knowledge Discovery and Data
Mining, Portland, Oregon, August 1996.

[14] Internationl Business Machines. IBM Intelligent Miner
User's Guide, Version 1 Release 1, SH12-6213-00 edi-
tion, July 1996.

[15] K. Kulkarni. Object oriented extensions in SQL3: a
status report. Sigmod record, 1994.

[16] J. Melton and A. Simon. Understanding the new SQL:
A complete guide. Morgan Kau�man, 1992.

[17] R. Meo, G. Psaila, and S. Ceri. A new SQL like operator
for mining association rules. In Proc. of the 22nd Int'l
Conference on Very Large Databases, Bombay, India,
Sep 1996.

[18] Oracle. Oracle RDBMS Database Administrator's
Guide Volumes I, II (Version 7.0), May 1992.

[19] H. Pirahesh and B. Reinwald. SQL table function open
architecture and data access middleware. In SIGMOD,
1998.

[20] K. Rajamani, B. Iyer, and A. Chaddha. Using DB/2's
object relational extensions for mining associations
rules. Technical Report TR 03,690., Santa Teresa Lab-
oratory, IBM Corporation, sept 1997.

[21] S. Sarawagi, S. Thomas, and R. Agrawal. Integrat-
ing association rule mining with relational database
systems: Alternatives and implications. Research Re-
port RJ 10107 (91923), IBM Almaden Research Cen-
ter, San Jose, CA 95120, March 1998. Available from
http://www.almaden.ibm.com/cs/quest.

[22] R. Srikant and R. Agrawal. Mining Generalized Asso-
ciation Rules. In Proc. of the 21st Int'l Conference on
Very Large Databases, Zurich, Switzerland, September
1995.

[23] R. Srikant and R. Agrawal. Mining Sequential Pat-
terns: Generalizations and Performance Improvements.
In Proc. of the Fifth Int'l Conference on Extending
Database Technology (EDBT), Avignon, France, March
1996.

[24] H. Toivonen. Sampling large databases for association
rules. In Proc. of the 22nd Int'l Conference on Very
Large Databases, pages 134{145, Mumbai (Bombay),
India, September 1996.

[25] D. Tsur, S. Abiteboul, C. Clifton, R. Motwani, and
S. Nestorov. Query ocks: A generalization of associa-
tion rule mining. In SIGMOD, 1998. to appear.

[26] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New Algorithms for Fast Discovery of Association
Rules. In Proc. of the 3rd Int'l Conference on Knowl-
edge Discovery and Data Mining, Newport Beach, Cal-
ifornia, August 1997.

