
Enabling Sovereign Information Sharing
Using Web Services

Rakesh Agrawal Dmitri Asonov Ramakrishnan Srikant

IBM Almaden Research Center, San Jose, CA 95120

ABSTRACT
Sovereign information sharing allows autonomous entities to
compute queries across their databases in such a way that
nothing apart from the result is revealed. We describe an
implementation of this model using web services infrastruc-
ture. Each site participating in sovereign sharing offers a
data service that allows database operations to be applied
on the tables they own. Of particular interest is the provi-
sion for binary operations such as relational joins. Applica-
tions are developed by combining these data services. We
present performance measurements that show the promise of
a new breed of practical applications based on the paradigm
of sovereign information integration.

1. INTRODUCTION
Current information integration approaches, as exempli-

fied by centralized data warehouses and mediator-based data
federations, are based on the assumption that the data in
each database can be revealed completely to the other data-
bases. A new model, which we shall henceforth refer to as
sovereign information sharing, was proposed in [8] to ful-
fill the requirements for integrating information across au-
tonomous entities. In this model, the execution of a query
over the union of relations from two different databases does
not reveal any information apart from the result of the query
to either entity.1 Applications include information exchange
between security agencies, intellectual property licensing,
crime prevention, and medical research.

We describe a practical realization of sovereign informa-
tion sharing on top of the web services infrastructure. Data
resides in DB2 v.8.1. database systems, installed on 2.4GHz/
512MB RAM Intel workstations, connected by a 100Mbit
LAN network. Web services run on top of the IBM Web-

1For example, suppose the entity A has a set R = {b, u, v, y}
and the entity B has a set S = {a, u, v, x}. As the result of
sovereign intersection |R∩S|, A and B will get to know the
result {u, v}, but A will not know that B also has {a, x},
and B will not know that A also has {b, y}.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 , June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . .$5.00.

Sphere Application Server v.5.0 and the IBM private UDDI
registry installed on one of the machines. We use Apache
AXIS v.1.1. SOAP library for messaging.

The basic capability provided by sovereign information
sharing is a set of crypographic protocols. The algorithmic
description of the protocols for set intersection, intersection
size, equijoin, and join size is available in [8]. Providing these
protocols as web services offered by the autonomous data
sources enables the development of novel applications, un-
encumbered by platform and implementation language con-
siderations.

2. SOVEREIGN INFORMATION SHARING
AS A GRID OF DATA SERVICES

In our architecture, each participating site offers two web
services: one receives requests to execute the specified pro-
tocol with the specified remote party and another serves the
requests of remote parties to engage in a protocol. For exam-
ple, Figure 1 shows the computation of the intersection size
of tables R and S belonging to parties A and B respectively.

2.1 Binary Operations over Web Services
The current tools for developing database-oriented web

services [2, 5, 6] have been designed for exposing operations
on a database belonging to a single party. For example, the
Web Services Object Runtime Framework for DB2 (WORF)
[5] allows predefined queries or stored procedures to be pub-
lished as web services. Query parameters are passed from
the client application to the web service as part of the re-
quest for service. Figure 2a shows a WORF generated web
service for a client application. In this example, the client
is checking the existence of a specific SSN in the remote
database.

However, these tools are not designed to create web ser-
vices that can take local tables as arguments. They are in-
adequate for developing data services involving operations
spanning over tables of two or more parties, which we refer
to as binary operations.

Being able to perform such operations is necessary for
implementing the sovereign information sharing protocols.2

Figure 2b shows an example, where a client application can
intersect its table with a remote table by providing the local
table as an argument to the remote web service.

2There is extensive distributed database literature [9, 10]
on execution strategies for implementing operations across
databases distributed over multiple parties. It will be inter-
esting to explore how this rich body of work can be applied
to web services.

SIS web service A
{�, �, count (�), count (�)}

SIS web service B
{�, �, count (�), count (�)}

Application

request
count(�),“R”,”S”

“2”

one round of
interaction

x

v

u

a

S

y

v

u

b

R

DB2 DB2

A B

Figure 1: Sovereign Information Sharing (SIS) architecture.

DB WS Provider
Application

request
(“Q1”,”employee”, N)

f (employee)

A B
DB2

SSN
employee

...

Q1 = select SSN
from employee

where

SSN=N

DB WS Provider
Application

request
(“Q2”,”employee”, table member)

member �employee

DB2
A B

SSN
member

... DB2

SSN
employee

...

Q2 = select member.SSN
from member,employee

where

member.SSN=employee.SSN

(hypothetical)

(a)

(b)

(standard)

Figure 2: (a) A web service utilizing only a local table (unary operation). (b) A hypothetical web service
taking a remote table as an argument (binary operation).

2.2 Providing Tables as Arguments
Unlike scalar values, there is no established standard for

encoding relational tables in a SOAP message. We circum-
vent the problem by employing the attachment facility in the
SOAP specification [1]. This option allows a client applica-
tions to attach any data (in our case, an exported local table
after applying necessary local predicates) to SOAP message
and let the web service fielding the request extract this data.
The web service imports the table into the local database
before calling the query.

2.3 Implementing Sovereign Protocols
For concreteness, we will discuss the implementation of

the intersection size protocol. It will be easy to see how the
implementation ideas extend directly to other operations.

Assume for simplicity that the tables R and S, belonging
to autonomous parties A and B, have one column each.

The following is the essence of the intersection size protocol
(see [8] for details), wherein party A learns nothing about S
except the intersection size |R ∩ S| (and |S|), and B learns
nothing about R (except |R|):

1. A encrypts table R into Ea(R) using the key a, and
sends it to B.

2. B encrypts table S into Eb(S) using the key b. It also
encrypts Ea(R), received from A, into Eb(Ea(R)).

3. B sends tables Eb(S) and Eb(Ea(R)) to A.

4. A decrypts Eb(Ea(R)) into Eb(R).

5. A computes |Eb(R) ∩ Eb(S)|, which equals |R ∩ S|.

Note that we use a commutative encryption in the above
protocol.

Figure 3 shows how this protocol is implemented. Party
B has advertised that it is willing to intersect its table S

SIS web service A

�, �, count (�), count (�)
SIS web service B

�, �, count (�), count (�)

request
“SISinterSize”,“R”,”S”

count(R � S)

DB2

table R

A B

request “SISinterSize”, ”S”,
attachment (exported table Ea(R))

response attachment(
exported table Eb(Ea(R)),

exported table Eb(S))

encrUDF(R) � Ea(R)
export table Ea(R)

import table Eb(Ea(R))
import table Eb(S)

decrUDF(Eb(Ea(R))) � Eb(R)

return count (Eb(R) � Eb(S))

1

2

3

4

5

6

Figure 3: Implementation of the sovereign intersection protocol.

BusinessService

Selective Document Sharing

tModel

basic operations: �, �, count (�), count (�)

BindingTemplate

A
TableMetaData = {…}

BindingTemplate

B
TableMetaData = {…}

Medical Research

tModel

BindingTemplate

B
TableMetaData = {…}

BindingTemplate

C
TableMetaData = {…}

…

…

Figure 4: A UDDI registry is employed to allow for dynamic service discovery.

with authorized parties.3 The following sequence of steps
takes place (Figure 3):

1. An application wishing to compute the size of the in-
tersection of R and S (and that has proper authoriza-
tions to do so) issues the request to the intersection
size service at A.

2. The web service at A encrypts each value in the table
R.

3. It sends the intersection size request to the web ser-
vice at B, with the table of encrypted values as an
attachment.

4. After B has finished its part of the protocol, the web
service at A receives response from the web service at
B, with two encrypted tables attached.

5. The web service at A removes its encryption from the
values in table R received from the remote web service.

6. Finally, the web service at A determines the intersec-
tion size of tables R and S and returns this result to
the application.

2.4 Resource Discovery
Before calling a web service, an application must be able

to:

3We assume that the authentication and authorization are
done using the standard facilities [3].

• find a party that offers the required web service (if the
party is not known at build time);

• determine the arguments (the names of the tables, co-
lumns, and necessary predicates) that must be pro-
vided to obtain the desired result.

We employ a UDDI registry [7] for this purpose. A UDDI
registry offers a way of storing and searching cataloged de-
scriptions of web services. The UDDI standard categorizes
the types of the entities stored in a registry into “Busi-
nessService”, “BindingTemplate”, and “tModel”. We use
them as follows (Figure 4):

• “BusinessService” represents a SIS web service, having
a set of functions corresponding to the the supported
SIS operations, such as intersection size.

• Each instance of the type “tModel” represents a se-
quence of operations that constitute a specific appli-
cation model. Since SIS operations (BusinessService)
can be used for many purposes, several tModels can
be linked to a BusinessService.

• Each instance of the type “BindingTemplate” links a
BusinessService and a tModel, and is specific to the
party. It provides an endpoint access address of the in-
stance of the BusinessService of that party, and stores
the required metadata (including a set of table names
and possible predicates) that are available for the given
tModel at the given party.

Exponentiation Implementation msec
Standard Java (BigInteger package) 32
MS Visual C++ (Crypto++ library) 65
DB2 UDF using standard Java (BigInteger) 33

Table 1: Exponentiation implementations (1024 bit).

Figure 4 gives an example of the three parties A, B, and
C, where A and B support selective document sharing ap-
plication (tModel), and B and C support medical research
application.

3. EVALUATION
This section presents performance measurements from our

implementation of the sovereign protocols.

3.1 Performance
Sovereign protocols require some communication between

the two parties, some number of database records to be en-
crypted and decrypted, and a few standard database oper-
ations to be applied (e.g. step 5 of the intersection protocol
given in Section 2.3). Both computation and communica-
tion complexities are linear in number of data records [8],
which is borne out by the experimental results.

Figure 5 shows the execution times for the four operations.
We have broken the execution time into the components
mentioned above. The performance numbers are presented
for tables having 10,000, 50,000, and 100,000 records each.

The cost of the protocols may appear high to the reader.
We would like to emphasize that although we are using
the familiar names, the functionality provided by, say the
sovereign join, is quite different from the standard relational
join. Comparing the execution times of the sovereign oper-
ations with the standard relational operations is, therefore,
inappropriate. The test we must apply is whether the per-
formance numbers are within the operating range for cre-
ating useful applications. We will describe two applications
we are building using these protocols where the answer is in
affirmative.

Figure 5 shows that the encryption is the dominant cost.
We, therefore, further study the cost of encryption.

3.2 Encryption
The encryption and decryption functions used in our pro-

tocols are based on exponentiation. For an input x, a mod-
ulus p, and encryption and decryption keys e, d (all four
numbers are 1024-bit long), the encryption and decryption
functions are as follows [8]:

encr(x, e, p) = xe mod p; decr(x, d, p) = xd mod p.

We employ the user defined function (UDF) facility in DB2
to implement encryption and decryption of column values,
which allows us to perform these operations within the data-
base, saving the cost of moving the data from the database
to application level and back. UDFs also allow for parallel
execution of encryption over multiple processors, although
our measurements do not take advantage of this feature.

Table 1 gives the performance comparison of the following
implementations of exponentiation:

• MS C++ implementation (Crypto++ library),

• Java native (BigInteger) implementation,

• DB2 UDF implementation based on standard Java (Big-
Integer).

Surprisingly, the Java implementation of exponentiation out-
performs the Visual C++ implementation. This superiority
could be due to different exponentiation algorithms used in
Java and C++ libraries. The algorithm used is a crucial de-
terminant of performance because different algorithms make
different number of calls to the modular multiplication of
large numbers.

Note that encrypting records inside the database is com-
petitive compared to the exponentiation with Java in the
main memory. The reason again is that most of the encryp-
tion time is spent by the processor doing multiplication of
large numbers.

3.3 Making Encryption Faster
Software Approaches We tried some custom implemen-
tations of exponentiation that used preprocessing based on
the fixed exponent (e) or the fixed base (x) to reduce cost.
Unfortunately, the fixed-exponent implementation turned
out to be slower than the Java native implementation of
exponentiation.

The fixed-base implementation optimizes the computation
for the case when the same value is encrypted multiple times
with different keys. Therefore, it is not useful for such ap-
plications as list intersection, where each value is encrypted
only once. However, for other applications such as document
sharing, the encryption is performed multiple times for the
same input table. In such cases, the fixed-base implementa-
tion of the exponentiation can be beneficial.

Hardware Approaches One possible way of increasing
the encryption speed would be to use crypto accelerators,
such as COTS accelerators for SSL [4]. These cards are fairly
inexpensive (about US $2000). Based on the specifications,
we expect them to speed up the exponentiation (and hence
the cost of protocol) by at least an order of magnitude.

The other source for performance enhancement would be
parallelism, as a record can be encrypted/decrypted inde-
pendent of other records in the database. We therefore can
get linear speedup.

4. APPLICATIONS
To test the effectiveness of our infrastructure we are build-

ing two applications.
The first application is list intersection that organizations

may employ to find which items in their lists are the same,
without disclosing the rest of the lists. For instance, security
agencies can determine the suspects they have in common
without disclosing the names of other suspects. This appli-
cation is easy to implement on top of our infrastructure. We
need a single call to the intersection service.

Selective document sharing is the second application. It
uses a sequence of calls to the intersection size service to only
find those documents for which the similarity score is high
enough to warrant their exchange between the two organiza-
tions. Specifically, this application calls the intersection size
service for each pair of documents dA, dB (one from the lo-
cal database and one from the remote database) to calculate
the similarity between them:

f(|dA ∩ dB |, |dA|, |dB |) = |dA ∩ dB |/(|dA| + |dB |)

db operations
communication

encryption

intersection size

number of records

h
o
u
rs

100,00050,00010,000

8

6

4

2

0

db operations
communication

encryption

intersection

number of records

h
o
u
rs

100,00050,00010,000

8

6

4

2

0

db operations
communication

encryption

join size

number of records

h
o
u
rs

100,00050,00010,000

8

6

4

2

0

db operations
communication

encryption

join

number of records
h
o
u
rs

100,00050,00010,000

8

6

4

2

0

Figure 5: Execution times (|R| = |S| = number of records).

5. SUMMARY
We presented a web services based infrastructure for en-

abling sovereign information sharing. This infrastructure
uses a grid of data services to perform database operations,
while ensuring that no information apart from the query
result is revealed.

The performance results, while demonstrating the feasi-
bility of using this paradigm for developing practical appli-
cations, also provide motivation for further research. The
possibilities range from the use of hardware accelerators for
speeding exponentiation to developing computationally less
expensive encryption to developing new protocols for richer
query processing.

Acknowledgements. We wish to thank Roberto Ba-
yardo, Marcus Fontoura, Jussi Myllymaki, Inderpal Narang,
Vijayshankar Raman, Berthold Reinwald, and Amit Somani
for insightful discussions.

6. REFERENCES
[1] SOAP Messages with Attachments.

www.w3.org/TR/SOAP-attachments, Dec. 2000.

[2] Database Web Services: An Oracle White Paper.
http://otn.oracle.com/tech/webservices/htdocs/

dbwebservices/Database_We%b_Services.pdf, Nov.
2002.

[3] Security in a Web Services World: A Proposed
Architecture and Roadmap. A joint white paper from
IBM Corp. and Microsoft Corp.
http://www-106.ibm.com/developerworks/

webservices/library/ws-secmap/, Apr. 2002.

[4] SSL Accelerators, Interactive Buyer’s Guide.
http://ibg.networkcomputing.com/ibg/Guide?

guide_id=4065, Nov. 2002.

[5] Web Services Object Runtime Framework for DB2:
Implementing DB2 Web Services.

http://www7b.software.ibm.com/dmdd/zones/

webservices/worf/DXXSERVL.PDF, Sept. 2002.

[6] SQL Server 2000 Web Services Toolkit. http://www.
microsoft.com/sql/techinfo/xml/default.asp,
2003.

[7] UDDI Spec Technical Committee Specification.
http://uddi.org/pubs/uddi_v3.htm, Oct. 2003.

[8] R. Agrawal, A. Evfimievski, and R. Srikant.
Information sharing across private databases. In
Proceedings of ACM SIGMOD, June 2003.

[9] P. Bernstein, N. Goodman, E. Wong, C. Reeve, and
J. Rothnie. Query processing in a system for
distributed databases (SDD-1). In ACM Trans.

Database Systems, 6(4), 1981.

[10] B. Lindsay, L. Haas, C. Mohan, P. Wilms, and
R. Yost. Computation and Communication in R*: A
Distributed Database Manager. In ACM Trans.

Database Systems, 2(1), 1984.

