
Techniques for Speeding up Range-Max Queries

in OLAP Data Cubes

Ching-Tien Ho Rakesh Agrawal Nimrod Megiddo Jyh-Jong Tsay�

IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

fho,ragrawal,megiddog@almaden.ibm.com

Abstract

A range-max query obtains the maximum over all selected cells of a data cube where the
selection is speci�ed by providing ranges of values for numeric dimensions. Our general approach
to speeding up range-max queries is to precompute and store certain key information of the data
cube. In [HAMS97], we gave a tree algorithm based on precomputed max over balanced hierar-
chical tree structures; a branch-and-bound-[Mit70]like procedure was used to prune unnecessary
search.

In this paper, we propose three orthogonal techniques with the objective of improving the
average response time of the range-max queries. First, rather than keeping only the index of
the largest value at each internal node of the tree, we keep the indices of the t largest values
with each internal node and use them to decrease the probability of scanning lower level nodes.
Second, we further partition each sibling set of internal nodes into smaller groups and sort the
precomputed indices within each group according to their indexed values. This speeds up the
scanning of internal nodes at the same level and covered by the query region without increasing
extra storage overhead. Third, we augment the tree with a precomputed reference array for each
level of the tree (except for the leaf level). Elements of a reference array contain references to
the next larger value, which are used to speed up the search. We compare our three algorithms
with the previous algorithm both analytically and empirically. Based on these comparisons, we
then propose and implement a hybrid algorithm, combining the advantages of these orthogonal
techniques, that improves the empirically measured range-max query time by as much as 100%.
We also give algorithms for incrementally updating the precomputed structures.

1 Introduction

An OLAP data cube [OLA96] can be viewed as a d-dimensional matrix. The dimensions of the ma-

trix correspond to functional attributes and the cells contain the values of the measure attributes for

the corresponding combination of functional attributes. For instance, in a 4-dimensional insurance

data cube, the dimensions of the matrix may correspond to the functional attributes of year, age,

�On leave from Department of Computer Science and Information Engineering, National Chung Cheng University,

Chiayi 621, Taiwan, ROC; Email: tsay@cs.ccu.edu.tw.

1

state, and insurance type; a cell may contain aggregated value of the revenue in a particular year

from customers of a certain age who live in a particular state and have bought insurance policies

of a certain type.

A class of queries over OLAP data cubes, called range queries, was studied in [HAMS97].

These queries compute aggregation of values from selected cells of a data cube, where the selection

is speci�ed by constraining the contiguous range of interest in the domains of some of the functional

attributes. Two types of aggregation functions were considered: max and sum; the corresponding

queries were called range-max and range-sum queries, respectively. Together, these two types of

queries cover all aggregate functions supported by SQL. The range-max techniques apply to min

whereas the range-sum techniques apply to average and count aggregate functions.

Range queries are frequent with respect to numeric attributes with natural semantics in ordering,

such as age, time, salary, etc. For instance, with the insurance data cube mentioned earlier, a range-

max query may obtain the maximum revenue from customers in the age group 37 to 52, in a year

from 1988 to 1996, in all of U.S., and having auto insurance. In an interactive exploration of data

cube, which is the predominant OLAP application area, it is imperative to have a system with fast

response time.

In [HAMS97], a tree-based algorithm was used to compute range-max queries. This algorithm is

based on precomputed max over balanced hierarchical tree structures. A branch-and-bound[Mit70]-

like procedure is also used to speed up the search.

Contributions In this paper, we propose three orthogonal techniques for improving the overall

response time of the basic tree algorithm for range-max queries. First, rather than keeping only

the index of the largest value at each internal node of the tree, we keep the indices of the t largest

values with each internal node and use them to further speed up the processing. Second, we

further partition each sibling set of internal nodes into smaller groups and sort the precomputed

indices within each group according to their indexed values. Without additional storage overhead,

this speeds up the scanning of internal nodes at the same level and covered by the query region,

Third, we augment the tree with a precomputed reference array for each non-leaf level of the tree.

Elements of a reference array contain references to the next larger value, which are used to speed up

the search. We present various worst-case and average-case analyses of algorithms based on these

new techniques, and con�rm these analyses with experimental results. While the �rst technique

yields a comparable algorithm, the algorithms based on the two latter techniques improve the

response time over the previous algorithm for most range sizes. Based on these analytical and

empirical results, we propose and implement a hybrid algorithm, combining the advantages of the

two latter orthogonal techniques, that signi�cantly improves the range-max query time by as much

as a factor of two in measured time or six in measured array reference count. Finally, we give

algorithms for incrementally updating the precomputed structures.

2

Related work There is extensive literature in the �eld of computational geometry on algorithms

for handling various types of range queries (see, e.g., [BF79] [Ben80] [CR89] [Cha90] [Meh84] [Vai85]

[WL85] [Yao85]). Most of the results share the following properties: First, the space overhead is

mostly non-linear in m (e.g. O(m logd�1m)), where m is the number of data points. Second, the

index domain of each dimension is assumed to be unbounded. Third, mostly the worst-case space

and time trade-o�s are considered. We, on the other hand, consider a space overhead which is

linear in m. We assume the index domain of each dimension is bounded and we aim at minimizing

the average-case time complexity. There are also pragmatic di�erences for typical \data cubes"

arising out of the computational geometry domain versus the OLAP domain. A canonical sparsity

of the OLAP data cube is about 20% [Col96] and dense sub-clusters typically exist, while the

computational geometry data cubes can be much sparser even after placing upper bounds on each

index domain.

Besides range-max, techniques for computing range-sum were also proposed in [HAMS97].

These techniques exploit the following special property of the sum operator for their e�ciency: for

the binary sum operation �, there exists an inverse binary minus operation 	 such that a�b	b = a,

for any a and b in the domain. Since there is no inverse 	 operation for max that satis�es this

property, the algorithms for range-sum in [HAMS97] do not apply to the range-max problem. It is

possible to adopt the tree structure used for range-max also for range-sum queries, as a range-sum

query may be answered by traversing the tree and adding or subtracting the values at various tree

nodes that collectively de�ne the query region. However, unlike range-max, the branch-and-bound

optimization cannot be applied to range-sum queries and it was shown in [HAMS97] that the spe-

cialized techniques based on pre�x-sums perform better for range-sum queries. This observation

continues to hold for the techniques proposed in this paper.

More generally, there has been considerable research in database community related to OLAP

data cubes. This includes work on modeling [GBLP96] [AGS97] and developing algorithms for

computing the data cube [AAD+96], for deciding what subset of a data cube to pre-compute

[HRU96] [GHRU97], for estimating the size of multidimensional aggregates [SDNR96], and for in-

dexing pre-computed summaries [SR96] [JS96]. Related work also includes work done in the context

of statistical databases [CM89] on indexing pre-computed aggregates [STL89] and incrementally

maintaining them [Mic92]. Also relevant is the work on maintenance of materialized views [Lom95]

and processing of aggregation queries [CS94] [GHQ95] [YL95].

Organization of the paper The remainder of the paper is organized as follows. In Section 2, we

formally de�ne the range-max problem, review the basic tree algorithm as presented in [HAMS97],

and present a more detailed analysis of the basic tree algorithm. Our analysis shows that the

number of leaf nodes accessed decreases exponentially when the range size increases and gives a

new performance bound for small range sizes. In Section 3, we present the fat-nodes algorithm,

3

which is an extension of the basic tree algorithm so that each internal node x will store t indices

to the top-t values in the subtree rooted at x. In Section 4, we give the sorted-nodes algorithm,

an extension of the basic tree algorithm so that adjacent sibling nodes are grouped and sorted

in order to speed up the scanning of many consecutive internal nodes. In Section 5, we present

the jump-nodes algorithm by augmenting the internal nodes of the tree with reference arrays to

improve the performance. In Section 6, we compare experimental results and the analytical results

of the four algorithms. Then, we propose a hybrid algorithm combining di�erent techniques. In

Section 7, we give incremental algorithms for updating related precomputed structures. For clarity,

we �rst focus our discussion on one-dimensional trees up to Section 8 and discuss the extension to

d-dimensional trees in Section 8. Finally, Section 9 concludes the paper. Proofs of the theorems

are given in Appendix.

We only consider dense data cubes in this paper. The sparse data cubes can be handled using

an approach similar to one presented in [HAMS97]. The basic idea is to decompose the data cube

into dense and non-dense regions and apply the proposed algorithms to the dense clusters. Another

related issue is that of selecting the subsets of dimensions for which the precomputed information is

stored. A similar problem was considered in [HRU96] [GHRU97]. The decision procedure proposed

in [HAMS97] can be directly used for this purpose.

2 Background

2.1 The Model

We are interested in �nding Max value and its location in a d-dimensional rectangular region of

a d-dimensional array A of order n1 � � � � � nd. We assume that all arrays have a starting index

0 for each dimension. We will use N to denote the domain (index space) of A, i.e., N = (0 :

n1 � 1; : : : ; 0 : nd � 1). We denote by D = f1; 2; : : : ; dg the set of dimensions.

The range-max query problem [HAMS97] can be formulated as getting the Max index of a

region of A de�ned as follows:

Max index(`1 : h1; : : : ; `d : hd) = (x1; : : : ; xd) where (8i 2 D)(`i � xi � hi)

and A[x1; : : : ; xd] = maxfA[y1; : : : ; yd] j (8i 2 D)(`i � yi � hi) g:
When d = 1, we usually drop the subscript 1 of n, ` and h. Unless stated otherwise, we denote

by Q the region (or range) of the input query. Thus, when d = 1, Q = (` : h) consists of all i's such

that ` � i � h.

There may be more than one index with the same maximum value in a speci�ed region. In such

case, we assume that the algorithm arbitrarily returns one of the indices with the maximum value

in the region.

4

level

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x1

x2 x3

x4 x5 x6 x7 x8
boundary node in−node out−node

C(x4) C(x5) C(x6)

C(x2)

Q

Figure 1: Searching a b-ary tree with n = 14 and b = 3.

The range-min query problem can be similarly formulated as getting the Min index of a region

of A. We only consider the Max index operation in this paper. The algorithms for the Min index

operation can be similarly derived.

For convenience, we will use Max as a function that takes a region as an argument and returns

the maximum value in the region. We use max to represent the traditional function that returns

the maximum value of a set or of all input arguments. Throughout the paper, we use the number

of tree nodes touched (or the number of indices accessed when there is more than one index or

value stored at each tree node) as a measure for the analytical time complexity.

2.2 The Basic Tree Algorithm

We now review the basic tree algorithm for range-max queries as proposed in [HAMS97]. The

data structure for storing the precomputed information can be viewed as a generalized quad-tree

[Sam89]. Each non-leaf node x \covers" a d-dimensional region (a hyper-cube), denoted C(x),

containing all the leaf nodes of the subtree rooted at x. For example, in Figure 1 the region covered

by x2 is C(x2) = (0 : 8). The index of the maximum value in region C(x) is precomputed and stored

at node x. The region covered by a non-leaf node x is partitioned into up to bd disjoint regions,

each covered by one of its children. We thus have a balanced tree structure with roughly the same

fanout for each node. The algorithm uses a branch-and-bound[Mit70]-like procedure to speed up

the �nding of max in a query region using this data structure. For clarity, we only review the

one-dimensional case. The construction of the tree and the search algorithm for the d-dimensional

case are similar. See [HAMS97] for details.

2.2.1 Constructing the Tree

The leaves of a tree are called level-0 nodes. A node is said to be at level i + 1 if the maximum

level of its children is i. Each non-leaf node, except possibly for one node per level, has precisely b

5

children. The number b is called the fanout of the tree.

The entries of array A (of size n) are stored as the leaves. Then, a b-ary tree is built in a

bottom-up manner and from left to right within each level as follows. Partition A into disjoint

ranges, each consisting of b entries, except possibly the last one. For each such range, add a parent

node to the b nodes in the range, compute the Max index of the range, and keep it at the parent

node. The last parent node may have less than b children. Recursively apply the same procedure

to the dn=be new parent nodes by viewing them as an array A of size dn=be, until there is only one

parent node at the same level which will be the root of the tree. Figure 1 shows an example of

n = 14 and b = 3. Clearly, the root of the tree is at level dlogb ne.

2.2.2 The Search Algorithm

Notation Given a non-leaf node x and a region Q, categorize each (immediate) child of x, say y,

as one of the three types: (1) an in-node1, if C(y) � Q; (2) an out-node, if C(y)\Q = �; and (3) a

boundary node, otherwise (that is, if C(y) \ Q 6= � and C(y) 6� Q). Thus, the immediate children

are partitioned into (up to) three sets: (1) I(x;Q) contains all the in-nodes; (2) O(x;Q) contains

all the out-nodes; and (3) B(x;Q) contains all the boundary nodes. As an example in Figure 1,

given a region Q = (2 : 5), then I(x2; Q) = fx5g; O(x2; Q) = fx6g and B(x2; Q) = fx4g. Note that
in the one-dimensional case, for a given x and Q, there are at most two boundary nodes, while

there can be any number (up to b) of in-nodes and out-nodes.

The set of boundary nodes B(x;Q) is further partitioned into two subsets: (1) Bin(x;Q) =

fyjy 2 B(x;Q);Max index(C(y)) 2 Qg and (2) Bout(x;Q) = B(x;Q) � Bin(x;Q). Use Figure 1

as an example again. Assume Q = (2 : 5). If Max index(C(x4)) = 2, then Bin(x2; Q) = fx4g. If
Max index(C(x4)) = 0 or 1, then Bout(x2; Q) = fx4g. (Note the label on a leaf node refers to the

index, not the value, of array A.)

Algorithm The algorithm for �nding Max index of a query region Q = (` : h) �rst �nds the

lowest-level node x such that C(x), the region covered by x, contains the query region Q. This can

be done simply by index calculation without searching the tree because b is �xed. (See [HAMS97].)

We treat this as one step in our complexity analysis later. If the precomputed index of the max-

imum value in C(x) lies in Q, we are done. Otherwise, the algorithm calls a recursive function

get max index given below with arguments x, Q, and ` to compute the answer.

Function get max index (x;Q; current max index)

(1) for all y 2 I(x;Q) [Bin(x;Q) do

(2) if (Max(C(y)) > A[current max index])

1The term internal node still refers to the standard meaning as a non-leaf and non-root tree node.

6

(3) current max index = Max index(C(y));

(4) for all z 2 Bout(x;Q) do

(5) if (Max(C(z)) > A[current max index])

(6) current max index = get max index(z; Q\ C(z); current max index);

(7) return (current max index);

The recursive function get max index(x;Q; current max index) takes as inputs the root of

a subtree containing Q, the region Q, and an index to the maximum value currently known

(current max index). Note that current max index was arbitrarily set to ` before calling

get max index the �rst time. In lines (1) to (3), the Max index of all regions C(y) for all

y 2 I(x;Q) [Bin(x;Q) is found and current max index is updated whenever necessary. Recall

that any node y 2 Bin(x;Q) has the property that Max index(C(y)) 2 Q even though C(y) 6� Q.

Thus, in lines (4) to (6), the Max index of all regions C(z) is found for all z 2 Bout(x;Q) by

recursively calling the same function. The condition at line (5) improves running time using a

branch-and-bound [Mit70] idea. If a value indexed by a precomputed Max index(C(z)) is already

less than or equal to A[current max index], then there is no need to �nd Max index(C(z) \ Q)

(because it is still less than or equal to A[current max index] and would not a�ect the result).

Complexity The worst-case time complexity of the basic tree search algorithm was shown

in [HAMS97] to be O(b logb r) for a range of size r, as opposed to O(b logb n). There is one caveat

here. For the complexity to be valid, we actually have to �nd the lowest-level node that covers the

input region (Q\C(z)) again after the recursion. Since we aim at minimizing the average running

time, we ignore this step in the implementation.

The average-case complexity, on the other hand, was shown as bounded from above by b+7+1=b,

much less than the worst-case bound and independent of the range size r. Note that the average-

case complexity here (and later for subsequent algorithms) refers to the average over random data

distribution (i.e., equal probability out of n! permutation of ranks), but maximum over all possible

range sizes and locations.

2.3 Further Analysis

The analysis in [HAMS97] gives an average-case upper bound for the total number of elements

accessed in both internal and leaf nodes. Notice that accessing elements in internal nodes is in

general more expensive than accessing elements in leaf nodes, since the internal nodes keep only

indices to elements. To better understand the behavior of the search algorithm, it is necessary to

count the number of accessed elements in internal nodes and leaf nodes separately.

In this section, we present an analysis that implies that the number of accessed elements in

the leaf nodes decreases exponentially when the range size increases. This implies that when range

7

size is large, most of the accessed elements are in internal nodes. Since when the range size is

small (� b2), most of the elements accessed will be in leaf nodes. Our new analysis gives a new

performance bound for small-sized ranges. The analysis is justi�ed by the experiments presented

in this paper. In addition, the analysis will be used in deriving the performance bounds of the

algorithms proposed in this paper, in which we count the number of accesses to internal nodes and

leaf nodes separately.

Let L(b; h) denote the average number of elements in the leaf nodes accessed by the search

algorithm to locate the maximum for a range of the form [0; r], with 0 � r � h. We assume every

r is of equal probability.

Lemma 1 L(b; h) � b
6(

1+ln b
b)k�1 where k = dlogb he � 1.

Proof: Let L(b; h) denote the average number of elements in the leaf nodes accessed by the search

algorithm to locate the maximum for a range of the form [0; r � 1], where 1 � r � h is the range

size, and b is the fanout of the tree. We assume every i is of equal probability. We �rst show that

L(b; h) � b
6(

1+ln b
b

)k�1 where k = dlogb he � 1.

We give a sketch of a proof by induction on k = dlogb he � 1. When k = 0, L(b; h) =
1
b

Pb
r=1

r(b�r)
b

. (When the range size is r starting node 0, the number of accessed leaf nodes is

r � b�r
b , where b�r

b is the probability that the scanning of r leaf nodes is required. The base case is

simply an average of all b combinations of r = 1 to b.) By integration, we can show that L(b; h) � b
6 .

Now assume the lemma holds for any k � k0, k0 � 0. We will show the lemma holds for

k = k0 + 1. Assume bk
0+1 < h � bk

0+2, and h0 = bk
0+1. Order the the b subtrees of the next level

from left to right. The probability to recurse the search on the ith subtree is 1=i. We thus can

derive the following formula:

L(b; h) =
L(b; h0)

b

�
1 +

1

2
+ : : :+

1

b

�
:

This implies that L(b; h) � L(b; h0)(1+ln b
b

). By induction, L(b; h) � b
6(

(1+ln b)
b

)(k
0�1)+1. There-

fore, L(b; h) � b
6(

(1+ln b)
b

)(k
0+1)�1 for k = dlogb he � 1 = (k0 + 2)� 1 = k0 + 1. This completes the

sketch of the proof.

Notice that in the search algorithm, after the process of the �rst node, the search problem is

reduced to two subproblems each on a range of the form [0; h� 1]. Thus the number of accessed

elements in the leaf nodes is about twice of L(b; h) derived in the above lemma. 2

Notice that in the search algorithm, after the process of the �rst node, the search problem

is reduced to two subproblems each on a range of the form [0; h]. Thus the number of accessed

elements in the leaf nodes is about twice of L(b; h) derived in the above lemma.

Lemma 2 The average number of accessed elements in the leaf nodes is about b
3(

1+ln b
b)k�1 where

k = dlogb re � 1, where r is the range size.

8

The above lemma implies that the average number of elements accessed is bounded by b
3 + 2

when the range size is small, i.e. much less than b2.

3 The Fat-Nodes Algorithm

In this section, we present an extension to the basic tree-based algorithm, which we shall call the

fat-nodes algorithm. The basic idea is that for each internal node x, rather than storing only one

index to the maximum value in C(x), we will store t indices to the top-t values in C(x).

Assume that t is �xed for all internal nodes and t � b. Then, it is straightforward to construct

the fat-nodes tree in a bottom-up manner similar to constructing the tree in the basic tree-based

algorithm. The di�erence is that choosing a maximum value among b values is now changed to

choosing the top-t values among b sorted lists, each of length t (or of length 1 for the bottom level).

3.1 The Search Algorithm

The fat-nodes search algorithm requires a change in the de�nition and processing of nodes in Bin

and Bout. Let Max index(C(x); i), 1 � i � t, denote the index to the i-th rank value in C(x).

We rede�ne Bin(x;Q) = fyjy 2 B(x;Q); (9i)(1 � i � t)(Max index(C(y); i) 2 Q)g. As before,

Bout(x;Q) = B(x;Q) � Bin(x;Q) is the complementary set of Bin(x;Q). For convenience, for

each node y 2 Bin(x;Q) [I(x;Q), we de�ne Max inbound index(y;Q) = Max index(C(y); i),

where i is the smallest integer satisfying Max index(C(y); i) 2 Q. Clearly, the value indexed

by Max inbound index(y;Q) is the maximum value in the region C(y) \ Q. Also, for each node

z 2 Bout(x;Q), we de�ne Min outbound index(z; Q) = Max index(C(z); t). The value indexed

by Min outbound index(z; Q) (which is outside Q) will be compared to a candidate of maximum

value currently found in Q to decide whether the search of the subtree rooted at z can be omitted

or not.

The new get max index function is given below. Note the changes in lines (2), (3) and (5).

Function get max index (x;Q; current max index)

(1) for all y 2 I(x;Q) [Bin(x;Q) do

(2) if (A[Max inbound index(y;Q)]> A[current max index])

(3) current max index = Max inbound index(y;Q);

(4) for all z 2 Bout(x;Q) do

(5) if (A[Min outbound index(z; Q)] > A[current max index])

(6) current max index = get max index(z; Q\ C(z); current max index);

(7) return (current max index);

9

3.2 Complexity Analysis

The worst-case time complexity of the fat-nodes algorithm is worse than that of the basic tree

algorithm with the same fanout b. The storage overhead is a factor of t of the basic tree algorithm.

The objective of the fat-nodes algorithm is to reduce the average-case complexity of the basic tree

algorithm, after normalizing the storage overhead.

Theorem 3 The average-case complexity of the fat-nodes algorithm is bounded from above by
4tt

(t+1)t+1 b+ 5t+ 4.

3.3 Remarks

From the recursion F described in the proof of the theorem in Appendix, it is revealed that the fat-

nodes algorithm may perform better by checking only the rank-1 index and skipping the remaining

t � 1 indices at a node, say x, even if Max index(C(x); 1) 62 Q. This depends on the ratio of

Q\C(x) to C(x). A simple rule is that if the ratio is less than 1=
p
b, then we only check the rank-1

index. In fact, even the rank-1 index should be skipped for a slightly better average time in this

case for any algorithm.

4 The Sorted-Nodes Algorithm

In this section, we present a di�erent extension to the basic tree algorithm, which we shall call the

sorted-nodes algorithm.

4.1 Constructing the Tree

The sorted-nodes algorithm starts with a tree that was constructed by the basic tree algorithm.

Then, for each sibling set of b internal nodes, we partition them into groups, each with up to c

consecutive nodes. Then for each group of c nodes, we sort the c indices according to the descending

order of the c indexed values. Table 1 gives an example of this.

Note that the storage overhead is the same as the basic tree algorithm. Within each group, the

association of each subtree and its corresponding index is lost in the group, but can be uncovered

by scanning the sorted index because the fanout b is �xed. Note that we do not partition the leaf

nodes into groups because permuting the original array A may increase the time for other OLAP

operations that need to access elements of A.

4.2 The Search Algorithm

First, we say an in-group is a group consisting of in-nodes only. We say a boundary group is a

group consisting of either at least one boundary node, or at least one in-node and one out-node.

Clearly, �nding the max index among all in-nodes in an in-group can be done by looking into the

10

range start 0 8 16 24 32 40 48 56

range end 7 15 23 31 39 47 55 63

max index 3 9 20 28 39 43 48 58

max value 5.7 4.3 8.2 3.1 4.5 7.7 5.1 7.2

group group 1 group 2

sorted max index 20 3 9 28 43 58 48 39

sorted max value 8.2 5.7 4.3 3.1 7.7 7.2 5.1 4.5

Table 1: An example of the sorted-nodes algorithm with b = 8 and c = 4.

�rst (sorted) index of the group. Thus, a factor of c speedup is achieved when compared to the

basic tree algorithm. For each boundary group, we perform the procedure in Figure 2.

// Searching a Boundary Group
(1) while there are more unscanned indices in the group do
(2) scan the next index, denoted by i;
(3) if (A[i] � current max value)
(4) break;
(5) else if (i is in query region Q) // and (A[i] > current max value)
(6) current max value = A[i];
(7) breek;
(8) else if (index i refers to a boundary node) // and index i is outside query region Q

(9) recurse to �nd the max index of the region in the boundary node;
// else index i refers to an out node, which is skipped

(10) end while

Figure 2: The search algorithm for a boundary group.

The main purpose of this procedure is to get to the �rst index, along the sorted order, of an

in-node or a boundary node whose index is in the region Q (line (5)). The branch-and-bound

technique is also applied (lines (3) and (4)). If the condition in line (8) is satis�ed, then the index

i of the current boundary node must be outside the query region Q and a recursion is required

for this boundary node. After the recursion, the while-loop continues until all c indices in the

group have been checked or the condition in line (3) or line (5) is satis�ed. Compared to the basic

tree algorithm, generally less in-nodes, but more out-nodes, need to be visited in the boundary

group. These two e�ects seem to o�set each other. However, the multiplicative factor of c gained

in scanning the in-groups is a clear advantage of the sorted-nodes algorithm over the basic tree

algorithm.

11

4.3 Complexity Analysis

The Worst-Case Complexity Following the worst-case analysis of the basic tree algorithm, it

is straightforward to derive the O((b
c
+c) logb r) worst-case complexity of the sorted-nodes algorithm

for an input range of size r.

The Average-Case Complexity We now show that the asymptotical, in the range size, average-

case complexity is in fact bounded from above by b
c +

7c+7
2 + c(c+1)2

4b , much less than the worst-case

bound. The reason for the asymptotical result is because the grouping in the sort-nodes algorithm

is not applied to the leaf nodes. The time complexity due to the access of leaf nodes is the same as

that of the basic tree algorithm, which decreases exponentially as the range size increases, Lemma 2.

When the range size is large, the time complexity is dominated by the number of accesses to internal

nodes. Thus, we only need to consider the number of accesses to the internal nodes in the following

theorem. Note that the derived average-case bound is not a function of the tree size and range size.

Theorem 4 The asymptotical average-case complexity of the sorted-nodes algorithm is bounded

from above by b
c
+ 7c+7

2 + c(c+1)2

4b .

The Choice of c One should choose the value of c to minimize the average-case bound b
c+

7c+7
2 +

c(c+1)2

4b . By choosing c � 0:52
p
b, the average-case bound is minimized to be bounded from above

by 3:78
p
b+ 3:5. The choice of c will be con�rmed by our experiments presented in Section 6.

Corollary 5 The average-case complexity of the sorted-nodes algorithm is bounded from above by

3:78
p
b+ 3:5.

4.4 Variations

Instead of fully sorting each group, we can sort the top t maxima in the group and swap them

with the �rst t positions of the group. Complexity analysis shows that it is slightly better than

the sorted-nodes algorithm in terms of the number of elements accessed. However, in the real

implementation, it may involve more overhead in searching the boundary group due to position

swapping. We will include its analytical and empirical results in the �nal version of the paper.

5 The Jump-Nodes Algorithm

We now present the jump-nodes algorithm by augmenting the internal nodes of the tree in the basic

tree-based algorithm with reference arrays to improve the performance. For ease of exposition, we

will �rst motivate the use of reference arrays by discussing how they alone can be used to answer

range-max queries. We will then discuss how they can be used in conjunction with the tree structure.

12

index 0 1 2 3 4 5 6 7 8 9

A 4 2 8 6 9 4 7 3 6 5

R 2 2 4 4 10 6 10 8 10 10

L -1 0 -1 2 -1 4 4 6 6 8

Figure 3: An example of array A and its precomputed next-high reference arrays, R and L.

5.1 A Stand-Alone Reference Array

We �rst consider an algorithm based on a stand-alone one-dimensional reference array, without the

use of the basic tree structure, for a range-max query. Let r = h � `+ 1 be the range size.

For every array element A[i], we precompute R[i] de�ned as follows:

R[i] =

�
j; if i < j < n, A[i] < A[j], and (8k)(i < k < j) A[i] � A[k])
n; if (8k)(i < k < n) A[i] � A[k]) .

That is, R[i] references index j which is the �rst that is larger than i also satisfying A[j] > A[i]. If

index j cannot be found, then we let R[i] = n reference an out-of-bound index. We will call R the

next-high reference array. Figure 3 shows an example of A and R with n = 10. (The array L will

be de�ned and used later.)

Finding Maximum from R The algorithm for �nding the max index in a range (` : h) of array

A based on precomputed R can be easily expressed as follows:

Function �nd max from R (A;R; `; h)

(1) max index = `;

(2) while (R[max index] � h)

(3) max index = R[max index];

(4) return (max index);

The variable max index is initialized to `, the leftmost index of the range (line (1)). Then (lines

(2)-(3)), max index is updated repeatedly by following the next-high reference R[max index] until

R[max index] references an index which is larger than h, the rightmost index of the range.

Note that constructing R from A should use a stack-based algorithm, which has a time com-

plexity of at most 2n comparisons. If a queue-based algorithm is used, a time complexity of about

n2=2 comparisons for the worst case, and �(n log n) comparisons for the average case. We omit the

details here.

13

Complexity Analysis of �nd max from R The time complexity depends on the number of

times line (3) is executed, which further depends on the data distribution. The best case is when

A[`] has the maximum value within the range, while the worst case is when A[`] < � � �< A[h].

We now analyze the average time complexity of the function �nd max from R assuming all

the orders on A[0]; : : : ; A[n� 1] are equally likely. Let f(r) be the average time complexity of this

algorithm for a range of size r. One can derive a recursive formula for f(r) as follows:

f(r) = 1 +
1

r
ff(1) + f(2) + � � �+ f(r � 1)g;

with the initial value f(1) = 1, assuming the entries of A are distinct. (If some elements are equal

then f(r) is even smaller.) To understand the above recursion, let ` = 0 and h = n� 1 and assume

without loss of generality that the n entries of A are the integers 1; : : : ; n. To derive f(n), consider

the value A[0] as a random variable that takes on a value i (i = 1; : : : ; n) with probability 1=n. In

case A[0] = i, the running time of the algorithm depends only on the order in which the values

i + 1; : : : ; n occur in the entries A[1]; : : : ; A[n � 1]. Although A[0] = i, all these orders are still

equally likely. Thus, by induction, the expected running time in this case is 1+ f(n� i). Thus, we

have f(n) = 1 + 1
n

Pn�1
i=1 f(i). The recursive formula implies

f(r)�
�
1� 1

r

�
f(r � 1) =

1

r
+

1

r
f(r� 1)

so f(r)� f(r� 1) = 1=r, and therefore

f(r) =
rX

i=1

1

i
:

It follows that f(r) is asymptotically equal to ln r. Also, it can be shown that f(r) � 1 + ln r for

any positive integer r.

Avoiding Worst-Case Behavior Even though the average running time for the algorithm is

about ln r, its worst-case running time is r when A is of the ascending order in this range. If

the data distribution is known to be close to the ascending order, we can instead precompute a

reference array L, analogous to R, de�ned as follows:

L[i] =

�
j; if 0 � j < i, A[j] > A[i], and (8k)(j < k < i) A[k] � A[i])
�1; if (8k)(0 � k < i) A[k] � A[i]).

See Figure 3 for an example. We will also call L the next-high reference array. Clearly, for each

element the array R references the next larger element of increasing index, while the array L

references the next larger element of decreasing index.

There is still one caveat in choosing R or L array. Even though the data distribution of A is

already known at the precompute time, the range for which the max index query will be performed

14

is not known until query time. If the array has combination of long ascending segment and long

descending segment (for instance, certain stock values over a time), choosing to precompute either

R or L (but not both) may still result in the O(r) worst-case performance. To avoid such possibly

frequent worst-case behavior, we propose an improvement.

Improved Algorithm Assume both R and L next-high reference arrays have been precomputed.

The algorithm has two phases. In phase 1 (lines (1)-(2)) it picks the best starting index among k

randomly chosen indices in the range and the two boundary indices. We will address how to choose

k later. It can be seen that with a probability of 1 � (1 � �)k, the starting index is among the

top � fraction (� < 1) in the range. The inclusion of two boundary indices in the initial candidate

set further speeds up the algorithm for a data distribution close to ascending or descending in the

range. In phase 2 (lines (3)-(12)), the algorithm follows either of the two reference arrays to an

index with increasing value of A in the range (the best increase is chosen), until both references of

the current index are referencing out-of-range indices.

Function �nd max from RL (A;R; L; `; h)

(1) pick k random indices from the range (` : h), denote them as i1; :::; ik;

(2) pick max index from f`; h; i1; :::; ikg by comparing fA[`]; A[h]; A[i1]; :::; A[ik]g;
(3) while ((R[max index] � h) or (L[max index � `)) do

(4) if ((R[max index] � h) and (L[max index] � `))

(5) if (A[R[max index] � A[L[max index]])

(6) max index = R[max index];

(7) else

(8) max index = L[max index];

(9) else if (R[max index] � h)

(10) max index = R[max index];

(11) else

(12) max index = L[max index];

(13) return (max index);

Complexity Analysis as a Function of k We now consider the average case and worst case

of the expected running time of function �nd max from RL on any input, as a function of k.

With a random sample of size k, this function has an expected running time no greater than

C1k + C2(r=k) for some constants C1 and C2. By choosing k =
p
C2r=C1 (compromising the

average-case complexity) we get a worst-case bound of 2
p
C1C2r, the same order as the average-

case bound. On the other hand, if we choose k = log r, we can keep the average-case complexity

as O(log r), but with a worst-case complexity of O(r= log r).

15

5.2 Embedding Reference Arrays in the Tree Structure

We are now ready to present the jump-nodes algorithm by embedding the reference arrays into the

basic tree algorithm.

Recall that the original array A is of size n and the fanout of the tree is b. All level-i nodes

of the tree can be logically viewed as a contracted array of size
�
n=bi

�
, denoted by Ai. We will

add and compute a reference array for each Ai, where 1 � i � dlogb ne. However, we do not have

a reference array for the original array A in order to conserve space overhead. Thus, the space

overhead due to the reference arrays (assuming only R, but not L, is computed) is the same as that

for the tree algorithm which is about n=(b� 1), and the total space overhead of the jump-nodes

algorithm is about 2n=(b� 1).

To use the added reference arrays in the algorithm, refer to lines (1) and (2) of the function

get max index in Section 2.2.2. Let S = I(x;Q)[Bin(x;Q) and assume node x is at level i � 2.

The tree algorithm will scan through all nodes y 2 S linearly to �nd the current max index. With

the precomputed reference array, however, one starts from the leftmost node in S and \jumps"

through the region of S until the reference array points to an index past the rightmost node in S.

More speci�cally, one can translate the set of nodes S to a region (` : h) in Ai�1. Then, apply

function �nd max from R given in Section 5.1. Thus, the average scan time for two lines of code

has been reduced from 2jSj to about ln jSj for uniformly distributed data. Note the factor of 2 of

the former is due to the need to access both the index to A and the value in A, while traversing

the reference array does not involve accessing the value in A.

5.3 Complexity Analysis

The worst-case time complexity of the jump-nodes algorithm is the same as that of the basic

tree algorithm with the same fanout. The following theorem shows that the asymptotical, in

the range size, average-case complexity is of order O(ln b). Based on the similar argument given

in Subsection 4.3, we only need to consider the number of accesses to the internal nodes in the

following theorem.

Theorem 6 The asymptotic average-case complexity of the jump-nodes algorithm is bounded from

above by 5 ln b+ 9.

6 Algorithms Comparison

6.1 Experimental Results

In this subsection, we present some experimental results to compare the basic tree algorithm with

the three proposed new algorithms: the fat-nodes, the sorted-nodes and the jump-nodes algorithms.

In the experiment, we take a one-dimensional arrayA of size 222 (elements) with randomly generated

16

0

50

100

150

200

4 6 8 10 12 14 16 18 20

ar
ra

y
re

fe
re

nc
e

co
un

ts

Log_2 (range)

Measured average reference counts, b = 256

The Basic Tree Algorithm
The Sorted-Nodes Algorithm

The Hybrid Algorithm

Figure 4: Measured average number of array reference counts as a function of the logarithm of the
range size: n = 222 and b = 256.

values. For a fair comparison, we let all four algorithms have about the same storage overhead

by adjusting the fanout b. Speci�cally, if we choose b as a fanout of the basic tree algorithm,

then we choose tb, b and 2b as fanouts of the fat-nodes, sorted-nodes and jump-nodes algorithms,

respectively. We only implement t = 2 for the fat-nodes algorithm, in such a case it has the same

fanout as the jump-nodes algorithm when normalized by storage overhead. For the sorted-nodes

algorithm, we choose c =
p
b=2 as suggested by our earlier analysis from Theorem 4.

Figure 4 shows the measured average numbers of array reference counts as a function of the

logarithm of the range size, with b = 1024 for the basic tree algorithm. (The fanouts of the other

algorithms are adjusted accordingly as stated above.) For each data point with a given range size

r, 24 � r � n=2, we take an average of 10000 iterations. For each run, we choose a query region

(` : `+r�1), where ` is randomly chosen from the range (0 : n=2�1). Figure 5 shows the measured

average run times, corresponding to Figure 4, except that we take an average of 100000 iterations

for each data point to get smoother curves. These timings were obtained on a 67-MHz RS/6000

Model-250.

Observe that the array reference counts are pretty consistent with their respective run times.

(Some inconsistencies are in part due to di�erent degrees of code optimization.) This indicates that

array reference count is a good measure for complexity estimate. Thus, we will base our following

discussion on the reference counts.

Figure 6 shows the measured average numbers of array reference counts with b = 64 for the

basic tree algorithm. Observe that for the basic tree and fat-nodes algorithms, there are roughly

two humps when b is chosen around
p
n; and roughly three humps when b is chosen around 3

p
n.

For the jump-nodes and sorted-nodes algorithms, there is only one big hump, which occurs around

the �rst (leftmost) hump of the other algorithms.

For the jump-nodes algorithm, the only hump arises around its fanout value, because we do not

17

0

50

100

150

200

4 6 8 10 12 14 16 18 20

tim
e

(in
 m

ic
ro

se
co

nd
s)

Log_2 (range)

Measured average times, b = 256

The Basic Tree Algorithm
The Sorted-Nodes Algorithm

The Hybrid Algorithm

Figure 5: Measured average times of range-max queries corresponding to Figure 4.

0

10

20

30

40

50

60

70

4 6 8 10 12 14 16 18 20

ar
ra

y
re

fe
re

nc
e

co
un

ts

Log_2 (range)

Measured average reference counts, b = 64

The Basic Tree Algorithm
The Sorted-Nodes Algorithm

The Hybrid Algorithm

Figure 6: Measured average number of array reference counts as a function of the logarithm of the
range size: n = 222 and b = 64.

18

0

50

100

150

200

4 6 8 10 12 14 16 18 20

ar
ra

y
re

fe
re

nc
e

co
un

ts

Log_2 (range)

Measured average reference counts, Sorted-Nodes, b = 256

c = 1
c = 2
c = 4
c = 8

c = 16
c = 32
c = 64

Figure 7: Measured average number of array reference counts for the sorted-nodes algorithm for
various values of c: n = 222 and b = 256.

build reference array on the leaf nodes. The height of its hump is about twice of other algorithms

due to the normalization of fanout from b to 2b. There is no other humps corresponding to the

range size at about b2 and b3 due to the time reduction of scanning in-nodes from O(b) to about

O(ln b).

Observe in Figure 4 that the reference counts of the fat-nodes algorithm (with t = 2) is generally

a right shift of that of the basic tree algorithm. Moreover, the valleys of the fat-nodes algorithm

have heights around two-third to half of the values of the corresponding valleys of the basic tree

algorithm. On the other hand, the corresponding humps of both algorithms have about the same

height, with the exception of the rightmost hump in all three Figures. These phenomena are due

to the combined e�ects of di�erent fanouts (2b vs. b) and di�erent probabilities of visiting the next

level of the tree ((1� �)2 versus. (1� �)).

To compare the sorted-nodes algorithm against the basic tree algorithm, we show in Figure 7

the e�ect of choosing di�erent c's. Note that when c = 1, the sorted-nodes algorithm degenerates

to the basic tree algorithm. By gradually increasing c starting from 1, the �rst hump also increases

slowly, while the other humps decreases �rst then eventually increases again. A good choice of c

experimentally is c �
p
b=2. Figure 7 con�rms our earlier analysis that choosing c =

p
b=2 (which

is 8 in this case) is an overall good choice.

6.2 Analyses

In this subsection, we compare the analytical complexities of the four algorithms and relate them

to the experimental �gures of the previous section. First, we summarize the recursive formula,

F (h), on the expected number of indices accessed for each algorithm, taking a range (0 : h � 1).

Note that the �gures we obtained in the last section is an average (over many ranges of the same

size) of average (over random data distributions). However, the function h(r) derived before is a

19

maximum (over many ranges of the same size) of average. The function F (h), which considers only

one instance of the average, has a better resemblance to the �gures.

The basic tree algorithm:

F (h) � 1 +

�
1� dk

b

�
(dk + 1) +

1

dk + 1
F (h� dkb

k) :

The fat-nodes algorithm:

F (h) � min

�
b

dk
; t

�
+

�
1� dk

b

�t

(dk + 1) +
1

dk + 1
F (h� dkb

k) :

The sorted-nodes algorithm:

F (h) � c+ 1

2
+

�
1� dk

b

���
dk
c

�
+
c+ 1

2

�
+

1

dk + 1
F (h� dkb

k) :

The jump-nodes algorithm:

F (h) � 1 +

�
1� dk

b

�
(ln dk + 1) +

1

dk + 1
F (h � dkb

k) :

In Figure 8, we make the plots of F (h), as a function of log2 h, for all four algorithms and a

hybrid algorithm described later. In fact, we further tighten the recursion for various boundary

conditions in the plot to get tighter upper bounds. In order to be more consistent with Figure 4,

we modify the recursion for the plot such that the reference count for accessing an index stored in

an internal node followed by accessing the indexed element stored in a leaf node is counted as two,

while accessing the leaf node only is counted as one.

We choose b = 256 for the basic tree algorithm and related b for other algorithms so that they

all have about the same storage overhead. Note that this �gure has the same parameter setup as

Figure 4 in n and b. Note that Figure 8 is an evaluation of the analytical function F which gives

an upper bounds on the average numbers of array indexing, while Figure 4 is the measured average

numbers (of 10000 iterations) of reference counts.

6.3 Hybrid Algorithm

Let � = dk=b. Table 2 summaries the key coe�cients in the recursions of the four algorithms and

a hybrid algorithm discussed later. The storage overhead is the multiplicative factor to the size of

A not including A. The \check in-bound complexity" shows the average number of array indexing

in deciding if the precomputed index (or indices) at a given tree node is in the range. The recurse

probability gives (an upper bound of) the probability that a recursion is required for the boundary

node. (There is at most one boundary node in the recursion due to the de�nition of F). The

fat-nodes algorithm has an advantage here. The last column shows the complexity of scanning the

in-nodes.

20

0

50

100

150

200

0 5 10 15 20

T
he

 n
um

be
r

of
 a

rr
ay

 r
ef

er
en

ce
 c

ou
nt

s

Log_2 (range)

Computed F, b = 256

The Basic Tree Algorithm
The Sorted-Nodes Algorithm

The Hybrid Algorithm

Figure 8: Comparison of F (h) of the �ve algorithms with n = 222; b = 256 for the basic tree
algorithm and related b for other algorithms so that the storage overhead is about the same.

algorithm storage check in-bound recurse scanning in-nodes
overhead complexity probability complexity

basic tree 1=(b� 1) 1 1� � b=2

fat-nodes t=(b� 1) min(1=�; t) (1� �)t b=2

sorted-nodes 1=(b� 1) (c+ 1)=2 1� � b=2c

jump-nodes 2=(b� 1) 1 1� � � ln b

hybrid (c+ 1)=c(b� 1) (c+ 1)=2 1� � � ln b� ln c

Table 2: Comparison of the �ve algorithms.

We now give some suggestions on how these three algorithms should be employed and combined.

First, the choice of fanout b depends on how much extra storage is available. For instance, choosing

b = 128 for the basic tree algorithm means only less than a 1% storage overhead is needed. When

the derived log2 b (from the given extra storage available) is small relative to log2 n, there will be

many humps (in a time-log(range) plot) and the jump-nodes algorithm is an overall good choice.

For the sorted-nodes algorithm, we recommend choosing c � p
b=2 for an overall good performance.

The sorted-nodes algorithm and the jump-nodes algorithm can be combined into a hybrid

algorithm. In the structure of the sorted-nodes algorithm, consider a virtual array V formed by the

index stored at the �rst node of each group in a sibling set. (Recall the index of the �rst node is an

index to the maximum value among all nodes in the group.) A reference array will be constructed

on V to create short-cuts among groups while scanning in-groups. Thus, the average complexity

required for scanning the in-nodes is further reduced from b=2c to � ln(b=2c) � ln b=2, when c is

chosen as
p
b=2. On the other hand, the storage overhead is only slightly increased from 1

b�1 to
1

b�1
c+1
c
� 1

b�
p
b
, when c is chosen as

p
b=2. The recursive function F of the hybrid algorithm can

21

be derived as follows:

F (h) � c+ 1

2
+

�
1� dk

b

��
ln

�
dk
c

�
+
c+ 3

2

�
+

1

dk + 1
F (h� dkb

k) :

We also implemented the hybrid algorithm and included its reference counts, timings and func-

tion F in Figures 4 to 6 and 8, respectively. From our experiments and approximated analysis of

the recursion of the hybrid algorithm, the best choice of c of the hybrid algorithm seems to decrease

a little bit from the (pure) sorted-nodes algorithm and roughly within the range
p
b=4 to

p
b=2. We

choose c =
p
b=2 = 8 for these �gures.

In order to normalize the storage overhead, we choose the fanout of the hybrid algorithm as
c+1
c
b = 9

8 � 256 = 288 in Figures 4 and 5. However, we choose the fanout of the hybrid algorithm as

256 in Figure 8, because the plot of function F is very sensitive to whether the fanout divides the

range size h or not (while Figures 4 and 5 are not sensitive to the same thing due to their averages

of many randomly chosen ranges).

It is possible to also combine the fat-nodes algorithm into the hybrid algorithm. However, we

recommend choosing t = 1 for lower levels to conserve storage and a larger t as the level increases.

The intuition is that a precomputed index at a higher-level node not only has a higher probability

of being visited but also has a higher time reduction once the index is found in the range.

7 The Batch-Update Algorithms

In a typical OLAP environment, updates to data cube are cumulated over a period of time and are

performed together as a batch at the end of each period. Thus, it is reasonable to assume a model

where a number of updates are issued successively before the next read-only query is issued. In

this section, we describe related batch-update algorithms that take a list of update points to array

A and modify the precomputed information accordingly in addition to modifying A. The input is

a list of update points, each of form hindex, valuei. For clarity, we assume all update points have

di�erent indices (locations) and all indices of update points are in the index domain of A. Both

restrictions can be alleviated with minor modi�cations to the algorithms.

The batch-update algorithm for the basic tree algorithm was given in [HAMS97] in a bottom-

up manner. The batch-update algorithm for the fat-nodes algorithm can be easily modi�ed from

that of the basic tree algorithm. We omit the details here. In the following, we �rst describe

batch-update for the sorted-nodes algorithm, then for the jump-nodes algorithm.

7.1 Updating for the Sorted-Nodes Algorithm

The batch-update algorithm of the sorted-nodes algorithm is based on that of the basic tree algo-

rithm interleaved with an algorithm to solve the following reduced subproblem.

22

Let Q1; � � � ; Qc be c adjacent ranges. Let xi be the index of the maximum value in Qi. Note that

due to the �xed fanout of the tree structure, one can derive i from xi with simple index calculation

taking the level of the node and the fanout of the tree. Let C be an array of xi's sorted descendingly

according to the values of A[xi]. For each range Qi, if there is a change in the new value of xi or

A[xi], we add the new value of xi, denoted yi, into a list U . Thus, U can be denoted as a list of

indices: y�1 ; � � � ; y�u where u � c. For the reduced subproblem, we assume given C and U , we need

to come up with a new array C0 which is equivalent to updating x�i in C by y�i for each 1 � i � u,

then sorting the updated array according to the (new) indexed values. A straightfoward solution

may require a sorting time of c elements.

We now describe an algorithm for the reduced subproblem which only requires a sorting time

of u elements and a scanning time of c + u elements. First, we create a c-bit mask, where the

i-th bit is one if and only if yi is in U (i.e., the maximum value or the maximum index of Qi has

been changed). Then, we sort the list U descendingly according to their indexed value. Then, we

merge-sort the list C and the update list U with the exception that an entry xi is ignored if the

i-th bit of the mask is one.

7.2 Updating the Reference Arrays

It is su�cient to describe the batch-update algorithm of a (one-dimensional) reference array, given

the original array and the input list of update points. For each increase-update hy; vi, one can

derive the new R[y], denoted R0[y] and the new L[y], denoted L0[y]. Due to this increase-update

hy; vi, the region (L0[y] + 1 : L[y]) of R may become invalid. Similarly, the region (R[y] : R0[y]� 1)

of L may become invalid. Figure 9 gives an example of a�ected R and L for an increase-update

hy; vi, where the values are represented by the vertical bars. For each decrease-update hy; vi, the
region (L[y] + 1 : L0[y]) of R may become invalid. Similarly, the region (R0[y] : R[y]� 1) of L may

become invalid. At the end of the list scanning, we will take union of all a�ected regions of R

and L, respectively, and run the function compute R given in Section 5.1 and a similar function

compute L over these regions.

8 Multi-dimensional Trees

In this section, we discuss how our new techniques can be applied to a d-dimensional tree structure

which was built on a d-dimensional array A. Applying the fat-nodes algorithm into a d-dimensional

tree is straightforward. We �rst discuss extensions for the jump-nodes algorithm, then for the

sorted-nodes algorithm.

23

yL[y]L’[y] R[y] R’[y]

L[y]

L’[y] R’[y]

R[y]

R affected region L affected region

v

A[y]

Figure 9: An example of a�ected R and L in for increase-update hy; vi.

8.1 Embedding the One-dimensional Reference Arrays

When the tree constructed is d-dimensional, we can embed the (one-dimensional) reference arrays

into the tree as follows. As before, we will embed the reference arrays only to all non-leaf nodes

Ai, i > 0. For each Ai, i > 0, which is a d-dimensional contracted array, we choose one dimension,

say dimension j, as the single dimension de�ned in the reference array. Along all other dimensions,

we construct as many independent reference arrays as necessary. Speci�cally, each reference array

is of size
�
nj=b

i
�
and there are

Q
8x2D;x6=j

�
nx=b

i
�
independent reference arrays embedded in Ai.

These one-dimensional reference arrays (each along dimension j) in the d-dimensional tree can

be used to replace lines (1) and (2) of the function get max index in Section 2.2.2 and generally

result in a speedup in time. Speci�cally, let S = I(x;Q) [Bin(x;Q) and assume node x is at

level i � 2. Note that S is a d-dimensional region and can be decomposed into many independent

one-dimensional region, denoted fSxg, each along dimension j. With the precomputed reference

array, one starts from the leftmost node in each Sx and \jumps" through the region of Sx until the

reference array points to an index passed the rightmost node in Sx. The same process is repeated

for all fSxg. Let rj be the length of region S in dimension j. The time complexity of original lines

(1) and (2) (for the tree algorithm) is 2jSj, while the time complexity for the new lines (1) and (2)

(with the use of reference arrays along dimension j) is about jSj(lnrj)=rj.
The choice of the single dimension j among all d dimensions can be decided either based on the

knowledge of the database administrator or from a collected query log. One simple heuristic is to

choose the dimension j which is mostly likely to have the longest length along dimension j in the

query region. Since the storage overhead, 2=(b� 1), can be adjusted by choosing a proper b, one

can apply this technique to di�erent dimensions separately, namely having more than one tree. In

fact, one can choose di�erent b's for di�erent trees based on a collected query log.

24

8.2 Multi-dimensional Reference Arrays

A natural question to ask at this stage is whether the reference array techniques generalize to higher

dimensions and whether a multi-dimensional reference array alone can be an e�ective data structure

for range-max queries over multi-dimensional data cubes. We give in Appendix a generalization of

the reference arrays to multi-dimensions. Such a structure for a d-dimensional array A requires 2d

di�erent references for each element of A, which is a large storage penalty except for small values

of d.

This storage penalty can be mitigated by using multi-dimensional arrays in conjunction with

the tree structure. All level-i nodes of the tree can be logically viewed as a contracted array of

form
�
n1=b

i
�� � � �� �nd=bi�, denoted by Ai. Assume that the storage overhead is a small fraction,

denoted �, of the size of A. Recall that the fanout is B = bd and the tree algorithm has a storage

overhead of � � 1=(bd � 1). If we apply the reference arrays to contracted arrays Ai for all i � 1,

then the space overhead is about (2d + 1)�. By choosing a new block parameter b0 which is about

double of the original block parameter (speci�cally b0 = d
p
2d + 1b), we can keep the space overhead

� the same as for the tree algorithm. Alternatively, one can apply the reference arrays only to

contracted arrays Ai for all i � 2 (i.e., ignoring levels 0 and 1). In the case, the additional storage

overhead due to the reference arrays is negligible compared to the storage overhead due to the tree

structure. The choice depends on the distribution of the sizes of range-max queries.

8.3 The Sorted-Nodes Algorithm

We can clearly embed the one-dimensional grouping of the sorted-nodes algorithm into a d-dimensional

tree based on the same technique discussed in Subsection 8.1. Here, we focus on the creation of a

d-dimensional structure for the sorted-nodes algorithm.

In the basic tree structure, each sibling set has bd nodes forming a d-dimensional b � � � � � b

cube. For each sibling set, we partition them into groups, each of size c�� � �� c. Then, sort all the

indices in each group descendingly according to their indexed values as in the one-dimensional case.

That is, we only keep a one-dimensional sorted list of size cd for each group even though the group

is a d-dimensional structure. The rest of the algorithm is the same as that of the one-dimensional

case. Note that one can extend the hybrid algorithm into a d-dimensional structure by adding the

reference array structure, one-dimensional or d-dimensional, among all leaders of the groups in the

same sibling set.

9 Summary

In this paper, we propose three di�erent techniques for improving the overall response time of

the previous basic tree algorithm [HAMS97]. First, the fat-nodes algorithm keeps the indices of

the t largest values with each internal node and uses them to reduce the probability of scanning

25

lower-level nodes. The sorted-nodes algorithm partitions each sibling set of internal nodes into

smaller groups of size
p
b=2 and sorts the precomputed indices within each group according to their

indexed values. This speeds up the scanning of in-nodes at the same level from O(b) to O(
p
b)

without incurring extra storage overhead. Third, the jump-nodes algorithm augments the tree

with a precomputed reference array for each non-leaf level of the tree. This further speeds up the

scanning of in-nodes to O(ln b).

Based on our implementation and theoretical analyses of the three new algorithms, we derived

a hybrid algorithm that combines the advantages of sorted-nodes and the jump-nodes algorithms

into one. We show through analysis and implementation that the hybrid algorithm improves the

overall time complexity of the basic tree algorithm signi�cantly. For range sizes that are larger

than b
p
b, the hybrid algorithm improves the basic tree algorithm by as much as a factor of two in

measured time and a factor of six in array reference count.

References

[AAD+96] S. Agarwal, R. Agrawal, P.M. Deshpande, A. Gupta, J.F. Naughton, R. Ramakrishnan,

and S. Sarawagi. On the computation of multidimensional aggregates. In Proc. of the

22nd Int'l Conference on Very Large Databases, pages 506{521, Mumbai (Bombay),

India, September 1996.

[AGS97] Rakesh Agrawal, Ashish Gupta, and Sunita Sarawagi. Modeling multidimensional

databases. In Proc. of the 13th Int'l Conference on Data Engineering, Birmingham,

U.K., April 1997.

[Ben80] J.L. Bentley. Multidimensional divide and conquer. Comm. ACM, 23(4):214{229, 1980.

[BF79] J. L. Bentley and J. H. Friedman. Data structures for range searching. Computing

Surveys, 11(4), 1979.

[Cha90] Bernard Chazelle. Lower bounds for orthogonal range searching: Ii. the arithmetic

model. J. ACM, 37(3):439{463, July 1990.

[CM89] M.C. Chen and L.P. McNamee. The data model and access method of summary data

management. IEEE Transactions on Knowledge and Data Engineering, 1(4):519{29,

1989.

[Col96] George Colliat. OLAP, relational, and multidimensional database systems. SIGMOD

RECORD, September 1996.

[CR89] Bernard Chazelle and Burton Rosenberg. Computing partial sums in multidimensional

arrays. In Proc. of the ACM Symp. on Computational Geometry, pages 131{139, 1989.

26

[CS94] S. Chaudhuri and K. Shim. Including group-by in query optimization. In Proc. of

the 20th Int'l Conference on Very Large Databases, pages 354{366, Santiago, Chile,

September 1994.

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation

operator generalizing group-by, cross-tabs and sub-totals. In Proc. of the 12th Int'l

Conference on Data Engineering, pages 152{159, 1996.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data ware-

housing environments. In Proceedings of the Eighth International Conference on Very

Large Databases (VLDB), pages 358{369, Zurich, Switzerland, September 1995.

[GHRU97] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Je�rey D. Ullman. In-

dex selection for OLAP. In Proc. of the 13th Int'l Conference on Data Engineering,

Birmingham, U.K., April 1997.

[HAMS97] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant. Range

queries in OLAP data cubes. In Proc. of the ACM SIGMOD Conference on Management

of Data, Tucson, Arizona, May 1997.

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes e�ciently.

In Proc. of the ACM SIGMOD Conference on Management of Data, June 1996.

[JS96] T. Johnson and D. Shasha. Hierarchically split cube forests for decision support: de-

scription and tuned design, 1996. Working Paper.

[Lom95] D. Lomet, editor. Special Issue on Materialized Views and Data Warehousing. IEEE

Data Engineering Bulletin, 18(2), June 1995.

[Meh84] Kurt Mehlhorn. Data Structure and Algorithm 3: Multi-dimensional Searching and

Computational Geometry. Springer-Verlag, 1984.

[Mic92] Z. Michalewicz. Statistical and Scienti�c Databases. Ellis Horwood, 1992.

[Mit70] L. Mitten. Branch and bound methods: General formulation and properties. Operations

Research, 18:24{34, 1970.

[OLA96] The OLAP Council. MD-API the OLAP Application Program Interface Version 0.5

Speci�cation, September 1996.

[Sam89] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1989.

27

[SDNR96] A. Shukla, P.M. Deshpande, J.F. Naughton, and K. Ramasamy. Storage estimation

for multidimensional aggregates in the presence of hierarchies. In Proc. of the 22nd

Int'l Conference on Very Large Databases, pages 522{531, Mumbai (Bombay), India,

September 1996.

[SR96] B. Salzberg and A. Reuter. Indexing for aggregation, 1996. Working Paper.

[STL89] J. Srivastava, J.S.E. Tan, and V.Y. Lum. TBSAM: An access method for e�cient pro-

cessing of statistical queries. IEEE Transactions on Knowledge and Data Engineering,

1(4), 1989.

[Vai85] P.M. Vaidya. Space-time tradeo�s for orthogonal range queries. In Proc. 17th Annual

ACM Symp. on Theory of Comput., pages 169{174, 1985.

[WL85] D.E. Willard and G.S. Lueker. Adding range restriction capability to dynamic data

structures. J. ACM, 32(3):597{617, 1985.

[Yao85] Andrew Yao. On the complexity of maintaining partial sums. SIAM J. Computing,

14(2):277{288, May 1985.

[YL95] W. P. Yan and P. Larson. Eager aggregation and lazy aggregation. In Proceedings of

the Eighth International Conference on Very Large Databases (VLDB), pages 345{357,

Zurich, Switzerland, September 1995.

28

A Appendix | Proofs of Theorems

Theorem 3 The average-case complexity of the fat-nodes algorithm is bounded from above by
4tt

(t+1)t+1 b+ 5t+ 4.

Proof: We consider a range of the form [`; h�1] and denote by r = h� ` the size of the range. Let

us �rst analyze the case ` = 0. Suppose h =
Pk

i=0 dib
i where the di's are natural numbers smaller

than b. Denote by F (h) the expected number of indices checked during the processing of the interval

[0; h� 1]. Suppose, without loss of generality, that dk � 1. First, if h = bk, then F (h) = 1 since

the maximum over the interval has been precomputed. Next, suppose bk < h < bk+1. Consider the

ranges Ri = [(i� 1)bk; ibk � 1], i = 1; 2; : : : ; b. Let � = dk=b. The probability that the maximum

over X = [0; bk+1 � 1] falls in the range Y = [0; dkb
k � 1] = R1 [� � � [Rdk is dk=b = �. If it

does, then only one index access is needed. Otherwise, we consider the overall probability that the

second maximum over X falls in the range Y while the maximum over X does not fall in range Y .

This probability is (1��)� and, thus, its associated expected number of index access is 2(1��)�.

In general, the expected number of index accesses associated with the probability that none of the

top i� 1 maxima over X falls in the range Y while the i-th maximum falls in the range Y , where

1 � i � t, is i(1� �)i�1�. Thus, the expected number of indices accessed is

F (h) � [�+ 2(1� �)�+ 3(1� �)2�+ � � �+ t(1� �)t�1�]

+ (1� �)t(t+ dk + 1) +
1

dk + 1
F (h � dkb

k)

=

"
1� (1� �)t

�
� t(1� �)t

#
+ t(1� �)t + (1� �)t(dk + 1) +

1

dk + 1
F (h � dkb

k)

=
1� (1� �)t

�
+ (1� �)t(dk + 1) +

1

dk + 1
F (h � dkb

k)

=

"
1� (1� �)t

�
+ (1� �)t

#
+ �(1� �)tb+

1

dk + 1
F (h � dkb

k) : (by substituting dk = �b)

We now maximize the three terms separately, as a function of � or dk. Note that � = dk=b and

0 < dk < b, thus 0 < � < 1. The �rst term simplies to [1� (1� �)t+1]=�, which is maximized to

t + 1 when � ! 0. The second term �(1 � �)tb is maximized when � = 1
t+1 , yielding a value of

tt

(t+1)t+1 b. The third term is maximized to 1
2F (h � dkb

k). Thus, the above equation continues as

F (h) � (t+ 1) +
tt

(t + 1)t+1
b+

1

2
F (h � dkb

k)

� 2(t+ 1) +
2tt

(t+ 1)t+1
b :

Next, for a general interval [`; h� 1], after the �rst level, if the maximum has not been found,

then the problem is reduced to at most two problems over ranges of the form [`0; n�1] and [0; h0�1],
to which our upper bound applies.

29

Suppose the smallest complete subtree that covers the given range is of size bk+1. Denote by

x the number of subtrees of size bk contained in the range. Obviously, 0 � x � rb�k, so r � xbk.

Then the �rst phase accesses up to t indices at the root, and with probability (1� r
bk+1

)t � (1� x
b
)t

we will have to access the roots of x internal subtrees in addition to, on the average, at most
4

t+1 +
4tt

(t+1)t+1
b more nodes in the two boundary problems.

Thus, the expected number of accesses for an interval of length r is bounded from above by

h(r) � t +

�
1� x

b

�
x+ 4(t+ 1) +

4tt

(t+ 1)t+1
b

!
� 4tt

(t+ 1)t+1
b+ 5t+ 4;

where the function attains its maximum over [0; b� 1] at x = 0. This proves our claim. 2

Theorem 4 The asymptotical average-case complexity of the sorted-nodes algorithm is bounded

from above by b
c
+ 7c+7

2 + c(c+1)2

4b .

Proof: We consider a range of the form [`; h�1] and denote by r = h� ` the size of the range. Let

us �rst analyze the case ` = 0. Suppose h =
Pk

i=0 dib
i where the di's are natural numbers smaller

than b. Denote by F (h) the expected number of indices checked during the processing of the interval

[0; h� 1]. Suppose, without loss of generality, that dk � 1. First, if h = bk, then F (h) = c+1
2 since

the maximum over the interval can be computed by examining one block of c maximums. Next,

suppose bk < h < bk+1. Consider the ranges Ri = [(i�1)bk; ibk�1], i = 1; 2; : : : ; b. The probability

that the maximum over [0; bk+1 � 1] falls in the range [0; dkbk � 1] = R1 [� � � [Rdk is dk=b. If

it does, then we are done. Otherwise, we �rst access the maxima over the ranges R1; : : : ; Rdk+1.

Notice that the maximum can be computed by examining
j
dk
c

k
+ c+1

2 indices in average. If the

maximum falls in the ranges R1 [: : : [Rdk , then we are done; if not, then we solve the problem,

recursively, over the range [dkbk; h� 1], as a subrange of Rdk+1.
2 It is easy to see that in the latter

case all the orders over the data values at points in Rdk+1 remain equally probable, so we can use

the same function F for describing the average-case complexity. Next, we analyze the probabilities

of the events that determine the expected number of indices accessed.

Let Ej denote the event in which the maximum over [0; bk+1� 1] does not fall in R1 [� � � [Rj.

Thus Pr(Ej) = 1� j=b. Denote by Fj the event in which the maximum over the Rj+1 is less than

the maximum over R1 [� � � [Rj . By de�nition, Ej \ Fj = Ej+1 \ Fj . Thus,

Pr(Ej \ Fj) = Pr(Ej+1 \ Fj) = Pr(Ej+1) Pr(Fj jEj+1) =

�
1� j + 1

b

�
j

j + 1
:

Denote by �Fj the complement of Fj . It follows that

Pr(Ej \ �Fj) = Pr(Ej)� Pr(Ej \ Fj) = 1� j

b
�
�
1� j + 1

b

�
j

j + 1
=

1

j + 1
:

2In fact, if the maximum over Rdk+1 falls in the query range we are done, but we ignore this event in the

probabilistic analysis.

30

We can now estimate F (h) as follows.

F (h) � c+ 1

2
+ Pr(Edk)

��
dk
c

�
+
c+ 1

2

�
+ Pr(Edk \ �Fdk)F (h� dkb

k)

=
c+ 1

2
+

�
1� dk

b

���
dk
c

�
+
c+ 1

2

�
+

1

dk + 1
F (h � dkb

k) :

To establish that the expected time is bounded by a constant, note that

F (h) < max
x

�
c+ 1

2
+

�
1� x

b

��
x

c
+
c+ 1

2

��
+

1

2
F (h � dkb

k)

=
b

4c
+
3c+ 3

4
+
c(c+ 1)2

16b
+

1

2
F (h � dkb

k)

(where x = 2b�c(c+1)
4 gives the maximum) and this inequality implies, by induction, that for all h,

F (h) <
b

2c
+
3c+ 3

2
+
c(c+ 1)2

8b
:

Next, for a general interval [`; h� 1], after the �rst level, if the maximum has not been found,

then the problem is reduced to at most two problems over ranges of the form [`0; n�1] and [0; h0�1],
to which our upper bound applies.

Suppose the smallest complete subtree that covers the given range is of size bk+1. Denote by

x the number of subtrees of size bk contained in the range. Obviously, 0 � x � rb�k, so r � xbk.

Then the �rst phase accesses, on the average, c+1
2 indices to �nd the maximum at the starting

node, and with probability 1� r
bk+1

we will have to access, on the average, the roots of
�
x
c

�
+2 � c+12

internal subtrees in addition to, on the average, at most b
c
+3c+3+ c(c+1)2

4b more nodes in the two

boundary problems.

Thus, the expected number of accesses for an interval of length r is bounded from above by

h(r) =
c+ 1

2
+

�
1� r

bk+1

� �
x

c

�
+
b

c
+ 3c+ 3 +

c(c+ 1)2

4b

!

� c+ 1

2
+

�
1� x

b

�
x

c
+
b

c
+ 3c+ 3 +

c(c+ 1)2

4b

!
:

The function on the right-hand side attains its maximum over [0; b�1] at x = 0, where its value

is b
c
+ 7c+7

2 + c(c+1)2

4b . This proves our claim. 2

Theorem 6 The asymptotical average-case complexity of the jump-nodes algorithm is bounded

from above by 5 ln b+ 9.

31

(a) (b)

(n1−1,n2−1)

(x,y)

subdomain 0subdomain 1

subdomain 2subdomain 3

(0,0) (n1−1,0)

(0,n2−1)

Figure 10: (a) The four subdomains. (b) The waves in subdomain 0.

Proof: Refer to the proof of Theorem 4 for the de�nitions of F (h) and h(r). The function F (h)

and h(r) for the jump-nodes algorithms can be derived as follows:

F (h) � 1 +

�
1� dk

b

�
(ln dk + 1) +

1

dk + 1
F (h � dkb

k)

� ln b+ 2 +
1

2
F ((h� dkb

k)

� 2 ln b+ 4:

h(r) � 1 + (1� x

b
)(ln x+ 4 ln b+ 8) (where 1 � x � b)

� 5 ln b+ 9:

2

B Appendix | Multi-dimensional Reference Arrays

For clarity, we �rst generalize the reference arrays to the two-dimensional (rectangular) region.

Then give the generalization to the d-dimensional region.

B.1 The Two-Dimensional Case

Given a two-dimensional domain of N = (0 : n1 � 1; 0 : n2 � 1) and a data point (x; y) in the

domain N , we de�ne subdomains 0, 1, 2 and 3 with respect to the data point and the domain N as

the domains (x : n1�1; y : n2�1); (0 : x; y : n2�1); (x : n1�1; 0 : y) and (0 : x; 0 : y), respectively,

Figure 10(a). Note that we purposely de�ne the subdomain to also cover the two boundary lines

adjoining its two adjacent subdomains. For instance, the points shown in the �gure are on the two

boundary lines of the subdomain 0.

32

For clarity, we use the following abbreviated notation. We denote the region

(l1 : h1; l2 : h2) = (min(l1; 0) : max(h1; n1 � 1);min(l2; 0) : max(h2; n2 � 1)):

That is, an \underline" and \overline" in the �rst (resp. second) argument guarantee that the low

and high indices are bounded from below by 0 and from above by n1�1 (resp. n2�1), respectively.

Given an array A of domain N , we de�ne, for each data point (x; y) 2 N ,

P0(x; y) =

8>><
>>:
(x0; y0); if A[x0; y0] = Max(x : x+ z; y : y + z) > A[x; y]

and A[x; y] = Max(x : x+ z � 1; y : y + z � 1)
where z = max(jx0 � xj; jy0� yj).

?; if A[x; y] = Max(x : n1 � 1; y : n2 � 1).

In other words, if we search a larger value than A[x; y] following the order of the right-angled waves

in the subdomain 0 originated from point (x; y), Figure 10(b), then (x0; y0) is on the �rst wave

that we �nd a larger value in it, and A(x0; y0) has the largest value in the wave. (If there is more

than one point with the largest value in the same wave, then we arbitrarily choose one.) Note that

P0(x; y) = ? (a symbol for an unde�ned value) means no larger value than A[x; y] is found in the

subdomain. Figure 11 shows an example of A(x; y) and P0(x; y), for 0 � x � 3 and 0 � y � 5.

A(x; y) x = 0 x = 1 x = 2 x = 3

y = 0 3 2 6 5

y = 1 4 9 7 6

y = 2 6 7 8 9

y = 3 8 5 3 2

y = 4 3 4 8 3

y = 5 5 3 4 7

P0(x; y) x = 0 x = 1 x = 2 x = 3

y = 0 (1,1) (1,1) (2,1) (3,1)

y = 1 (1,1) ? (3,2) (3,2)

y = 2 (0,3) (2,2) (3,2) ?
y = 3 ? (2,4) (2,4) (3,4)

y = 4 (0,5) (2,4) ? (3,5)

y = 5 (3,5) (2,5) (3,5) ?

Figure 11: Example of A(x; y), on the left, and P0(x; y), on the right.

Similarly, we de�ne P1(x; y), P2(x; y) and P3(x; y) as follows. Here, z = max(jx0 � xj; jy0 � yj)
as before.

P1(x; y) =

8<
:
(x0; y0); if A[x0; y0] = Max(x� z : x; y : y + z) > A[x; y]

and A[x; y] = Max(x� z + 1 : x; y : y + z � 1),
?; if A[x; y] = Max(0 : x; y : n2 � 1).

P2(x; y) =

8<
:
(x0; y0); if A[x0; y0] = Max(x : x+ z; y � z : y) > A[x; y]

and A[x; y] = Max(x : x+ z � 1; y � z + 1 : y),
?; if A[x; y] = Max(x : n1 � 1; 0 : y).

P3(x; y) =

8<
:
(x0; y0); if A[x0; y0] = Max(x� z : x; y � z : y) > A[x; y]

and A[x; y] = Max(x� z + 1 : x; y � z + 1 : y),
?; if A[x; y] = Max(0 : x; 0 : y).

33

As before, we will call P0 through P3 the next-high reference arrays, a generalization of R and L

arrays for the 1-dimensional case.

The algorithm takes as inputs a two-dimensional integer domain N , a two-dimensional array

A of domain N , the precomputed four next-high reference arrays of the same domain N , and a

two-dimensional integer region Q � N . It returns a location (x; y) 2 Q such that A[x; y] is the

maximum in region Q. The algorithm consists of three phases. We will use the terms location and

(data) point interchangeably.

� Phase 1: The objective of this phase is to pick a good starting point (location).

First, pick k random points in Q, for an appropriately chosen k. Then, pick the point with

the maximum value among the k random points and the four corner points.

� Phase 2: This is the main phase that generally iterates many times. The objective of this

phase is to monotonically move towards a \better" point in the region (i.e., with larger values)

following the best choice among the four next-high references.

The �rst iteration starts with the point (x; y) chosen in phase 1. Let C = fP0(x; y); P1(x; y),
P2(x; y); P3(x; y)g \ Q. In general, iteration i starts with a point (x; y) computed in the

iteration i� 1 and does the following:

{ it either generates the output point (x0; y0) (as input for iteration i+1), where (x0; y0) 2 C

and A[x0; y0] � A[x00; y00] for all other (x00; y00) 2 C,

{ or generates the output ? if C is empty (i.e., all four next-high references are outside

region Q), then the iterations are stopped and the input point (x; y) is passed to phase

3.

� Phase 3: This is the clean-up phase which decides whether there are any left-over subregions

(of Q) not covered in phase 2. For each uncovered subregion Q0, we recursively call this

algorithm with Q = Q0. In the worst case, there are 4 left-over subregions to be recursed on.

Figure 12(a) shows the beginning of phase 3 with point (x; y) and P0(x; y) = (x0; y0) in the

subdomain 0. Figure 12(b) shows that the Max index in the shaded region is (x; y), from

the De�nition of P0. The Max index of the left-over shaded region in Figure 12(c) is still

unknown, which needs to be recursed into the algorithm as a new region. Finally, the output

Max index of region Q is then chosen among data points (x; y) and all output data points

from the recursion.

B.2 The d-Dimensional Case

Recall that N is the d-dimensional domain (0 : n1 � 1; : : : ; 0 : nd � 1) of A. Given a d-dimensional

domain N and a data point X = (x1; x2; : : : ; xd) in the domain N , de�ne the i-th subdomain, for

34

(a) (b) (c)

(x,y)

(x’,y’)

(x,y) (x,y)

(x’,y’) (x’,y’)

Figure 12: (a) The beginning of phase 3 with points (x; y) and (x0; y0). (b) The Max index of the
shaded region is (x; y). (c) The Max index of the left-over shaded region is still unknown which
needs to be recursed into the algorithm as a new region.

all 0 � i < 2d, with respect to the data point X and the domain N , as the domain (r1; : : : ; rd),

where rj = xj : nj � 1 if the j-th bit of i is 0, and rj = 0 : xj if the j-th bit of i is 1.

In the following, let z = max(jx1 � x01j; : : : ; jxd � x0dj). As before, we use an \underline" and

\overline" in the j-th argument to guarantee that the low and high indices are bounded from below

by 0 and from above by nj � 1, respectively. Also let r0j = xj : xj + z if the j-th bit of i is 0

and r0j = xj � z : xj if the j-th bit of i is 1. Let r00j = xj : xj + z � 1 if the j-th bit of i is 0 and

r00j = xj � z + 1 : xj if the j-th bit of i is 1. Clearly, rj , r0j and r00j are all functions of i. The

parameter i is omitted for clarity. We will use rj , r
0
j and r00j to specify three di�erent ranges in the

j-th dimension for each given i. Recall that Max takes a region as an argument and returns the

maximum value of A in that region.

Given the array A, for each data point (x1; : : : ; xd) 2 N and each 0 � i < 2d we de�ne

Pi(x1; : : : ; xd) =

8<
:
(x01; : : : ; x0d); if A[x01; : : : ; x0d] = Max(r01; : : : ; r0d) > A[x1; : : : ; xd]

and A[x1; : : : ; xd] = Max(r001 ; : : : ; r00d).
?; if A[x1; : : : ; xd] = Max(r1; : : : ; rd).

Intuitively, if we search a larger value than A[X] following the order of a d-dimensional right-angled

waves in the subdomain i originated from point X , then (x01; : : : ; x0d) is on the �rst wave that we

�nd a larger value in it, and A[x01; : : : ; x
0
d] has the largest value in the wave. Also, Pi(X) = ? means

no larger value is found in the subdomain i.

The algorithm for the d-dimensional case can be derived by generalizing the two-dimensional

algorithm as follows. In the �rst phase, the four corner points are replaced by 2d corner points. In

the second phase, we de�ne C = fPi(x1; : : : ; xd)j0 � i < 2dg \ Q. In the third phase, deriving the

left-over d-dimensional subregions is more complicated. The left-over subregion in each of the 2d

subdomains may not be convex. However, it can be partitioned into up to d � 1 convex regions.

The speci�c partitioning is described next.

Let (x1; : : : ; xd) be the data point passed to phase 3. Let Q be the input region to the algorithm.

Let P0(x1; : : : ; xd) = (x01; : : : ; x0d) = X 0. Let (x1 : y1; : : : ; xd : yd) be the intersection of region

35

Q and subdomain 0, i.e., Y = (y1; : : : ; yd) is the corner node of Q in subdomain 0. Recall z =

max(jx01�x1j; : : : ; jx0d�xdj). The left-over subregion in subdomain 0 is partitioned into the following

convex regions:

(x01 : y1; x2 : y2; : : : ; xd : yd); (x1 : x
0
1 � 1; x02 : y2; x3 : y3; : : : ; xd; yd);

� � � ; (x1 : x01 � 1; : : : ; xd�1 : x0d�1 � 1; x0d : yd):

Here, any region containing `j : hj with `j > hj is an empty region. Note that among these d

regions there is at least one empty one. This is because X 0 lies outside region Q while Y is the

corner node of Q, thus there exists a j, 1 � j � d, such that x0j > yj . The left-over subregions for

other subdomains can be similarly partitioned. The only change is that for subdomain i and for

each j such that the j-th bit of i is 0, the two values specifying the range in the j-th dimension are

reversed.

36

