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Abstract

Many practical applications require that distance mea-
sures to be asymmetric and context-sensitive. We intro-
duceContext-sensitive Learnable Asymmetric Dissimilar-
ity (CLAD) measures, which are defined to be a weighted
sum of a fixed number of dissimilarity measures where the
associated weights depend on the point from which the dis-
similarity is measured. The parameters used in defining the
measure capture the global relationships among the fea-
tures. We provide an algorithm to learn the dissimilarity
measure automatically from a set of user specified compar-
isons in the form “x is closer toy than toz,” and study its
performance. The experimental results show that the pro-
posed algorithm outperforms other approaches due to the
context sensitive nature of the CLAD measures.

1. Introductions

Distance measures play a vital role in many applica-
tions such as supervised and unsupervised learning, infor-
mation retrieval, and product recommendations. Typically,
the distances are assumed to be of a specific type such as
Euclidean, Mahalanobis, Manhattan, or inverse-cosine. In
some cases, the distance measure is specified by the domain
expert. Even in the case of adaptive norms [6], the distance
measure is symmetric, and does not adapt based on the point
from which it is measured. However, many practical appli-
cations need the measures to be asymmetric and vary with
the context. For example, the measure used to find docu-
ments similar to a document on Botany should be different
from the measure used in the case of a document on Zool-
ogy. Similarly, the measure of inclusion of meaning of one
sentence in another is not symmetric [10].

We propose a general class of dissimilarity1 measures
that are asymmetric and spatially-varying. They are defined

1We prefer the term dissimilarity over distance because distance could
mean a metric but the measure defined here is not a metric.

as a weighted sum of a set of simple dissimilarity measures
where the associated weights vary (linearly in the simplest
case) within feature space. Since the weights are dependent
on the point from which the dissimilarity is measured, i.e.,
they are spatially varying, we say that the proposed mea-
sures are context-sensitive. Moreover, the linear relation-
ship between the weights capture the global semantic re-
lationships among the features. We refer to the proposed
measures asContext-sensitive Learnable Asymmetric Dis-
similarity (CLAD) measures.

We present an algorithm to learn the measure, given a
set of relative comparisons of the form “x is closer toy
than toz”. We refer to such relative comparisons astriplet
constraints. We convert the triplet constraints into an ob-
jective function and use gradient descent for optimization.
Three variants of the objective function yield three variants
of the learning algorithm. We empirically evaluate our al-
gorithm against prior approaches, including the one based
on SVMs [15]. The results show that our algorithm outper-
forms the other approaches due the context sensitive nature
of the CLAD measure.

1.1. Related work

Learning the distance measure that a user implicitly em-
ploys to arrive at the relevance of search results has been
investigated earlier in multimedia retrieval (e.g., [14]). This
problem has also been explored in machine learning and
data mining communities. Though not all (e.g., [2, 9, 15]),
most of these efforts have been targeted toward learning
distance measures for the purpose of improving the perfor-
mance of clustering algorithms (e.g. [3, 4, 12, 13, 17]).

The distance learning algorithms can be categorized ac-
cording to the type of information they require to learn the
underlying distance measure. Some algorithms learn the
distances from a given set of unlabeled samples (e.g., [12]),
while other algorithms need pair-wise constraints in terms
of pairs of instances that are similar or dissimilar, or belong
to same or different classes (e.g., [17, 3, 4]). For learning
asymmetric distances, it is not meaningful to use pair-wise



constraints. We therefore employ triplet constraints of the
form “x is closer toy than toz”. The triplet constraints
have been used by Schultz and Joachims in [15], although
for learning symmetric distances. They formulate distance
learning from relative comparisons as a quadratic optimiza-
tion problem, in which the triplet constraints directly be-
come constraints in the optimization problem. They also
propose an approach based on SVMs to learn the distances.
Our experimental results show that our algorithm consis-
tently outperforms their proposal.

Like CLAD, the SVaD measures in [12] are also de-
fined as a weighted sum ofm simple dissimilarity mea-
sures. However, in SVaD, the feature space is divided into
K regions, the weights change only across the regions and
they remain constant within a region. TheK regions can
be thought of as representingK topics and each region is
associated with a specific weight vector. In non-clustering
scenarios, dividing the feature space intoK regions may
not be appropriate. We, therefore, use continuously varying
weights.

1.2. Paper Organization

We formally define CLAD measures in Section 2 and
formulate the problem of learning CLAD measures from
relative comparisons in Section 3. In Section 4, we describe
the learning algorithm. We present the experimental results
in Section 5 and summarize our contributions in Section 6.

2. Context-sensitive Learnable Asymmetric
Dissimilarity Measures

We first provide the formal definition and then explain
the underlying intuition.

2.1. CLAD Definition

DEFINITION 2.1 Let g1, g2, . . ., andgm be m dissim-
ilarity measures that measurem different aspects of dis-
similarity. Let the feature space be<n. Given a set ofm
n-dimensional vectorsA = {a1, . . . , am} and anm dimen-
sional vectorw, the CLAD measure ofy from x, dA,W (x, y)
is defined as:

dA,w(x, y) ≡
m∑

i=1

(aT
i x + wi)gi(x, y). (1)

Note thataij represents the effect of occurrence of the
jth term inx on the weight of theith term when computing
the distance fromx. The larger the value ofaij , the larger
is the weight and the dissimilarity.

When ai = 0,∀i, m = n and gl(x, y) = (xl − yl)2

then CLAD is identical to the weighted Euclidean dis-
tance measure. Similarly, whenai = 0,∀i, m = n and

gl(x, y) = (1/n − xlyl) then it is identical to the weighted
cosine distance measure. It may be noted that the Kullback-
Leibler divergence measure [11] is a special case of CLAD
measures whenw = 0, A = I , andgl(x, y) = log(xl/yl).

2.2. Motivation

The motivation for CLAD comes from the domain of
text documents, although the following observations hold
in other domains too. When we are measuring the dissim-
ilarity of a documenty from a documentx on Botany, we
want to measure the dissimilarity with respect to the words
that are specific to Botany. The words that are not related
to Botany even though they occur in both the documents
should not contribute to the dissimilarity. This behavior can
be best captured when the weights on the features change
with the point from which the dissimilarity is being mea-
sured.

Assume that the documents are represented by a vector
of length equal ton, the number of words in the vocabulary.
The element corresponding to a word in the vector is pro-
portional to the frequency of occurrence of the word in the
document. That is,xi = fi/F , wherefi is the frequency of
theith word in the documentx andF =

√∑
f2

i . Consider
m = n andgl(x, y) = (1/n − xlyl). Let x be a document
on Botany. As mentioned, it would be desirable to compute
the dissimilarity ofx with other documents only with re-
spect to those words relating to Botany. Supposex contains
a noisy word such as “network”. Then, the traditional mea-
sure would yield a dissimilarity less than 1 (or a non-zero
similarity) with any documenty containing the word “net-
work” even thoughy may not be directly related to Botany.
Supposeai corresponding to “network” is such that its en-
tries corresponding to Botany related words are large, then
the effective weightaT

i x + wi would be large and hence the
dissimilarity. Thus, by employingA, we can mitigate the
problem of noisy words. Note thatw is applied uniformly
in feature space to give more importance to globally signif-
icant words and less to stop-words.

For illustration, we have in the Appendix A the words
related to some example words automatically extracted us-
ing matrixA obtained by applying our proposed algorithm
on a textual data set. We find that the most of the words
corresponding to the least values ofaij are indeed related
to theith word.

3. Learning using Relative Comparisons

Assume that the relative comparisons are given in the
form of triplets τi = (xi

1, xi
2, xi

3); i = 1, . . . , r, meaning
thatxi

1 is closer toxi
2 than toxi

3. That is,τi implies that

dA,w(xi
1, xi

2) < dA,w(xi
1, xi

3); i = 1, . . . , r. (2)
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We, therefore, interchangeably use constraints and inequal-
ities. Given these triplets, the objective is to findA and
w such that the number of unsatisfied inequalities is mini-
mized.

Let

eA,w(τi) =
{

0 if dA,w(xi
1, xi

3)− dA,w(xi
1, xi

2) > 0,
1 otherwise.

Then, the objective of learning process is to minimizeE,
which is defined as:E(A, w) =

∑r
i=1 eA,w(τi).

4. Learning Algorithm

Note thatE(A, w) is a discontinuous function. We ap-
proximateE(A, w) by a function that can be differentiated
with respect toaij andwi, and use a gradient descent ap-
proach to find optimalA andw. We approximateE(A, w)
using the following three methods.

4.1. Cumulative Error

In this scheme, we approximateE by the cumulative
error of each unsatisfied inequality. LetuA,w(τ i) =
h(dA,w(xi

1, xi
3)− dA,w(xi

1, xi
2)), for i = 1, . . . , r, where

h(z) =
{

−z if z < 0,
0 otherwise.

(3)

Note thatuA,w(τ i) is an approximation ofeA,w(τi). Then,
the cumulative error is defined as:

JC(A, w) =
r∑

i=1

uA,w(τ i). (4)

Let I(A, w) = {i : uA,w(τ i) > 0} denote the set of
inequalities not satisfying (2). Then,

JC(A, w) =
∑

i∈I(A,w)

[dA,w(xi
1, xi

2)− dA,w(xi
1, xi

3)]. (5)

From the definition of the dissimilarity measure, we obtain

JC(A, w) =
∑

i∈I(A,w)

m∑
l=1

(aT
l xi

1+wl)[gl(xi
1, xi

2)−gl(xi
1, xi

3)].

Let yil = [gl(xi
1, xi

2)− gl(xi
1, xi

3)] then,

JC(A, w) =
∑

i∈I(A,w)

m∑
l=1

(aT
l xi

1 + wl)yil. (6)

Whenal = 0,∀l, andm = n, the above problem reduces
to the classical perceptron learning problem [7]. That is,
finding a hyperplane containing the origin such that allyi

lie on the same side of the plane. In [15], the authors solve
this problem using SVMs.

4.2. Maximum Error

E(A, w) can also be approximated with the maximum
error of unsatisfied inequalities. That is, the aim is to min-
imize the maximum error made by the unsatisfied inequali-
ties. Let

im = arg max
i:uA,w(τ i)>0

uA,w(τ i).

Then the corresponding objective function is given by

JM (A, w) =
m∑

l=1

(aT
l xim

1 + wl)yiml. (7)

In SVM terminology [7], in this formulation, the objective
is to find a feasible solution that maximizes the margin of
separation.

4.3. Cumulative ofk Maximum Errors

This scheme is a compromise between the previous two
schemes. Here, the objective is to minimize the cumu-
lative of the topk errors of unsatisfied inequalities. Let
ICM (A, w) contain the indices ofk unsatisfied inequalities
with maximum errors. Then, the objective function would
be

JCM (A, w) =
∑

i∈ICM (A,w)

m∑
l=1

(aT
l xi

1 + wl)yil. (8)

4.4. Avoiding trivial solutions

In all the above schemes, we impose the following con-
straints onA andw to avoid trivial solutions to the mini-
mization problem:

‖ai‖2 = 1,∀i and‖w‖2 = 1.

4.5. Algorithm

We propose a gradient descent algorithm to solve the
minimization problem. DifferentiatingJC(A, w) with re-
spect towl we obtain:

∂JC

∂wl
=

∑
i∈I(A,w)

yil. (9)

With respect toajl, we obtain:

∂JC

∂ajl
=

∑
i∈I(A,w)

xi
1jyil. (10)

The gradients corresponding toJM andJCM also look sim-
ilar to the above equations.
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Input:

1. Type of distance measuregl

2. Relative qualitative feedback,τi, i = 1, . . . , m

3. Parameters:η < 1, ρ(0) < 1

Output: A andw that minimizeJ(A, w)

Learning Algorithm:

1. Set t=0;

2. Initializeai to zero vector andwl to 1/
√

m.

3. Computeyil∀i, andl.

4. Determine the set of unsatisfied inequalitiesI(A, w).

5. Updatewl using (9) andwl = wl − ρ(t)(∂J/∂wl) for
l = 1, . . . , m.

6. Normalizew

7. Updateajl using (10) andajl = ajl − ρ(t)(∂J/∂ajl)
for j = 1, . . . , n, andl = 1, . . . , m.

8. Normalizeal for l = 1, . . . , m.

9. ρ(t + 1) = ηρ(t), t = t + 1.

10. Go to STEP 4 until the termination criterion is satisfied.

11. Exit.

Figure 1. Learning Algorithm

We summarize the algorithm in Figure 1. The algorithm
starts with a uniform weights and all-zero vectorsai. In
each iteration, the set of unsatisfied inequalities is found,
the gradients in (9) and (10) are computed, and the weights
and vectors are updated. The algorithm stops after reaching
a termination criterion. The most often used termination
condition is the completion of a fixed number of iterations.
We denote the algorithms that optimizeJC , JM andJCM

by AlgoC , AlgoM and AlgoCM , respectively.
The update equations are quite intuitive. For example,

if gl is dimension-dependent as in the case of weighted Eu-
clidean, it can be observed from (9) that the weight corre-
sponding to thelth dimension is decreased by the cumu-
lative error made by all the unsatisfied inequalities in that
dimension. Note that the update forwl is the same as in the
perceptron learning algorithm [7]. A similar interpretation
follows the update forajl.

5. Experimental Study

We present the results of two sets of experiments that
illustrate the superior performance of the proposed CLAD-
based algorithms over traditional approaches. In the first
set of experiments, we study the relative performance of
the three variants of the proposed algorithm. In the sec-
ond set of experiments, we compare the performance of the

proposed algorithm with the SVM-based distance learning
algorithm [15].

As in [15], we measure the performance of algorithms by
the number of constraints satisfied by the dissimilarity mea-
sure after convergence. The bigger the number of satisfied
constraints, the better the performance of the algorithm.

5.1. Data sets

We used three data sets in our experimental studies. In
the first set of experiments, we used the “Car” data set. In
the second set of experiments we used the well-known 20
NewsGroup and WebKB data sets in addition to the Car data
set. The Car data set consists of numerical attributes. We
used additional textual data sets in the second set of exper-
iments because the algorithm [15] with which we compare
the proposed algorithm, was applied on textual data (viz.,
WebKB).

Car data set

The Car data set consists of a description of 1506
car models with 23 numeric attributes each, and was ob-
tained from the popular websiteEdmunds.com. Examples
of features used are: FrontHipRoom, BaseNumberof-
Cylinders, CityRange, FrontHeadroom, RearHipRoom,
Price, FrontLegRoom, Height, Weight, RearLegRoom,
RearShoulderRoom, BaseEngineSize, FrontShoulder-
Room, Wheelbase, Width, Torque, CityMileage, High-
wayRange, Length, RearHeadroom, Horsepower, Fu-
elTankCapacity, and HighwayMileage. After eliminating
models with missing data, we retained a feature set asso-
ciated with 906 models. (We plan to upload this data set
onto the UCI machine learning repository soon.) Since
the values of the attributes vary over a wide range, they
were normalized into the range [0, 1]. In the second set of
experiments, we used a subset of this data set containing
the data corresponding to three of the most populous
models viz., Compact Sedan, Midsize SUV and Mini SUV
which contain 71, 119 and 94 data points respectively. We
consider 70% of this subset to generate training inequalities
and the remaining 30% to generate testing inequalities.

20 News Group data set

We considered three different subsets (all of size 500)
of 20 News Group data [1] that are known to contain
clusters of varying degrees of separation [16]. We de-
note the three subsets byBinary, Multi5 and Multi10.
Binary had 250 randomly sampled documents from the
group talk.politics.mideast and another 250 randomly
sampled documents from talk.politics.misc.Multi5 had
100 randomly-sampled documents from each of the
groups comp.graphics, rec.motorcycles, rec.sport.baseball,
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sci.space, and talk.politics.mideast. Finally,Multi10
had 50 randomly-sampled documents from each of the
groups alt.atheism, comp.sys.mac.hardware, misc.forsale,
rec.autos, rec.sport.hockey, sci.crypt, sci.electronics,
sci.med, sci.space, and talk.politics.gun. We used two
versions of each of the subsetsBinary, Multi5 andMulti10,
one to generate the training inequalities and the other to
generate testing inequalities.

Documents were represented using a set of vocabulary
terms. Vocabulary sets were generated by stopword re-
moval, stemming and thresholding on the frequency of oc-
currence of terms. We used normalized term-frequency vec-
tors to represent the documents. The size of the vocabu-
lary used to represent the documents in theBinary data set
was about 2300, inMulti5 about 4000 and inMulti10 about
1400.

WebKB data set

The WebKB data set [5] contains 8145 Web pages per-
taining to computer science departments of various univer-
sities. The collection includes the entirety of four depart-
ments, and additionally, an assortment of pages from other
universities. The pages are divided into seven categories:
student, faculty, staff, course, project, department and other.
In this paper, we used the four most populous non-other
categories: student, faculty, course and project, all together
containing 4199 pages. This data set was used in the exper-
iments reported in [15]. As in [15], we split the data set into
a training set and a testing set containing 70% and 30% of
the documents, respectively. As in the case of the 20 News-
Group data sets, the vocabulary set used to represent the
documents was generated by stopword removal, stemming
and thresholding on the term-frequency, and the documents
were represented by normalized term frequency vector.

5.2. Comparison of AlgoC , AlgoM , and AlgoCM

The first set of experiments that used the Car data set
was aimed at testing the ability of the algorithms to con-
verge to a solution with and without noisy relative com-
parisons. This was done by assuming somewtarget to
generate the inequalities. In this case, we initialized the
weights to a random vector in all algorithms. We report
the average values over 10 runs. Since we know the target
weight, apart from the number of unsatisfied constraints, we
measure the performance of the algorithms byl2 distance,
‖wtarget − wpredicted‖, between the target weight and the
predicted weight (also referred to as prediction error).

Without noise

Figure 2 shows the progress of AlgoC in a typical run.
The top graph in the figure shows the evolution of number of

Figure 2. Convergence of Algo C .

unsatisfied inequalities and the bottom the prediction error
with the number of iterations. As it is expected of a gradient
descent algorithm, the error is monotonically decreasing.
Even though the number of unsatisfied inequalities is not
strictly monotonically decreasing, as the iterations progress,
it eventually becomes zero.

Table 1 compares performance of the three versions of
the proposed algorithm in learning the target weights. In all
the three cases, the algorithms converged with no unsatis-
fied inequalities. However, the predicted weights differed
from the target weights to some extent. The middle col-
umn in the table shows the number of iterations taken by
the algorithms to converge to zero unsatisfied inequalities
averaged over 10 random initializations of the weights. We
note that AlgoC converges faster but results in a larger pre-
diction error and AlgoCM finds the target weights with high
accuracy, but relatively slowly when compared with AlgoC .

Note that AlgoC tries to find a feasiblew that satisfies all
the inequalities. On the other hand, AlgoM not only finds a
feasiblew but also tries to find aw that maximizes the mar-
gin. This is why we see that the prediction error of AlgoM

is less than that of AlgoC . However, AlgoM takes more
iterations to converge to a feasible solution. From equa-
tions (7), (8) and (9), it may be noted that AlgoM moves
the weight toward theyim

vector corresponding to most un-
satisfied inequality whereas, AlgoCM moves the weight to-
ward the average ofy’s corresponding to the top few unsat-
isfied inequalities. Thus, AlgoCM moves the weight more
cautiously. This is the reason for AlgoCM to be faster and
more accurate than AlgoM .

With noise

The training data consisting of relative comparisons is
generally prone to noise. To simulate this scenario, we in-
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Table 1. Comparison of Algo C , Algo M and
Algo CM .

Algorithm Average ‖wtarget−
# of iterations wpredicted‖

AlgoC 419 0.21
AlgoM 677 0.17

AlgoCM 601 0.14

Table 2. Performance on Noisy Data.
Algorithm % of Unsatisfied Average #

Inequalities of Iterations
AlgoC 6.26 794
AlgoM 11.29 560

AlgoCM 10.09 879

troduced noise in our training data by randomly reversing
some of the preferences generated usingwtarget in the train-
ing data. This situation may occur when two objects are
almost equally preferable and the user may have preferred
one over the other by a narrow margin. We made the proba-
bility of a particular preference being reversed a decreasing
function of the difference between the evaluations. Thus,
preferences based on narrow margins were more likely to
be inconsistent.

In this case, due to inconsistencies in the preference, the
algorithms do not find the set of weights leading to zero un-
satisfied inequalities. The algorithms are terminated if there
is no improvement in the number of unsatisfied inequali-
ties for a fixed number of iterations. Table 2 summarizes
the results for noisy data. The middle column of the ta-
ble shows the percentage of unsatisfied inequalities. We see
that AlgoC converges to a more accurate set of weights even
though it takes more iterations than AlgoM . This behavior
of AlgoC is mainly due to the fact that it averages ally’s
corresponding to unsatisfied inequalities, thus minimizing
the effect of noise. For these reasons, and since in general
we do not believe in the existence of a set ofA andw that
would result in no inequalities being violated, we use AlgoC

in the next set of experiments.

Execution Speed

We ran our experiments on a 2GHz Pentinum 4 server
with 1 GB RAM. In the case textual data sets, we found that
the time taken to complete 40 iterations by AlgoC increased
very slowly (from about 44 minutes to 48 minutes) with
the number of training constraints varying from 1,000 to
200,000.

5.3. Comparison with SVM and other Algorithms

In the second set of experiments, we use all the data sets
to compare the performance of the proposed algorithm with
that of other algorithms. From these data sets, we gener-
ated relative comparisons using the following procedure. A
triplet (x1, x2, x3) from the training set was first randomly
chosen and was added to the set of training triplets only if
the class labels of the first two are the same and the label
of the third is different. Similarly, we generated the testing
triplets from the testing set. We kept the number of train-
ing samples equal to the number of testing samples. The
training and testing constraints were generated from two
different subsets. In these experiments, we considerm = n
andgl(x, y) = (xl − yl)2. It may be noted that, in case
of 20 NewsGroup and WebKB data, since we represent the
documents as unitized term-frequency vectors, the resulting
measure would be equivalent to the weighted cosine dissim-
ilarity measure.

We report the results when AlgoC was used to learn
CLAD. In all the experiments, the values ofρ(0) andη were
set to 0.001 and 0.95 respectively. AlgoC was stopped after
completing 40 iterations in each case. We denote the results
obtained by AlgoC as CLAD.

The baseline accuracy we consider is that obtained by
uniformly weighting all the features. We refer to the corre-
sponding results as “Uniform Weights”. WhenA is consid-
ered to be the set of zero vectors, AlgoC becomes identical
to the perceptron learning algorithm. Hence, we report the
corresponding results of AlgoC as that of the “Perceptron”
learning algorithm.

We also compared AlgoC to the approach proposed
in [15]. We used SVMlight [8] for this purpose and fixed
the value of the regularization parameterC to 1. We refer
to the corresponding results as “SVM”.

To study how various algorithms generalize from differ-
ent amounts of training data, we performed the experiment
in which the number of training constraints are changed
from 1,000 to 200,000. Figure 5.3 shows the learning curves
of various algorithms on Car, Binary, Multi5 and WebKB
data sets. Since the graphs corresponding to Multi10 looked
very similar to that of Multi5, we omit the Multi10 graph
here.

CLAD performed consistently better than Uniform
Weights, Perceptron and SVMs on all data sets because of
its context-sensitive nature. As shown in Appendix A, the
parameters in CLAD measure show the desired properties
mentioned in Section 2.

6. Summary

We defined a general class of dissimilarity measures and
proposed three variants of a learning algorithm to learn
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Figure 3. Learning curves of various algorithms on different data sets.

the dissimilarity measures from triplet constraints. We an-
alyzed the performance of these variants in the presence
noise. We also compared the performance of the proposed
algorithm with that of SVMs by comparing the accuracies
of the corresponding dissimilarity in satisfying the triplet
constraints. We observed that the proposed algorithm per-
forms remarkably better than other competing algorithms,
particularly on textual data sets. Moreover, the parameters
used in defining the measure are shown to capture the rela-
tionship between the features.

In the present work, we addressed a fundamental prob-
lem in data mining, viz., learning the dissimilarity measure.
In the future, we would like to explore the use of CLAD in
clustering, classification, information retrieval and product
recommendation.
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A. Appendix

We list below the words corresponding to the first 40
least values ofaij along with theith word for somei where
the A matrix was obtained by applying AlgoC on Multi5
data set. We also show the most probable class associated
with the root words within parentheses. It may be noted that
most of the words corresponding to the leastaij are indeed
related to theith word.

air (sci.space): space orbit sky nasa hst thing launch in-
ternet moon idea mission night nicho time cost rocket dseg
toronto billboard isn mass work earth actual zoo fred power
design spencer talk vnet ibm find sunset loss put high cso
star engin

aircraft (sci.space):space nasa pat orbit time think access
digex hst fund long sky idea don mission prb make earth
billboard gov thing flight internet cso moon launch interest
uiuc design plant toronto mass project sunset mccall engin
island problem major zoo

acm (comp.graphics):file graphic program format map
point bit color code sphere gif data convert think run iff
version email public virtual ibm fast siggraph user center
read mode thank video polygon system engin plane group
fax interest book umich ftp screen

ascii (comp.graphics):graphic bit file group program con-
vert point siggraph color cost video format run help make
think map copyright look post code polygon email ibm cen-
ter interest don version set window robert motorola algo-
rithm support server system bezier fax dec call

bike (rec.motorcyles):bmw dod rider drive bnr dog duke
org tool ride tek deal drink acpub moa shaft andrew msf
owner mike road switch beavington sale adjust biker max
parr behanna driver respect act buck log std tank honda ama
morgan david

bmw (rec.motorcyles):bike dod ride dog sun wheel be-
hanna stop road drive biker bnr max nec hydro back car
yamaha sure steer green front mike org shaft seca ef-
fect similar honda duke pipe hole thread drink learn ursa
csundh30 contact patch seat
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