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Abstract. We study the following problem in a sovereign information-
sharing setting: How to ensure that the individual participants, driven
solely by self-interest, will behave honestly, even though they can benefit
from cheating. This benefit comes from learning more than necessary pri-
vate information of others or from preventing others from learning the
necessary information. We take a game-theoretic approach and design
a game (strategies and payoffs) that models this kind of interactions.
We show that if nobody is punished for cheating, rational participants
will not behave honestly. Observing this, our game includes an audit-
ing device that periodically checks the actions of the participants and
penalizes inappropriate behavior. In this game we give conditions un-
der which there exists a unique equilibrium (stable rational behavior)
in which every participant provides truthful information. The auditing
device preserves the privacy of the data of the individual participants.
We also quantify the relationship between the frequency of auditing and
the amount of punishment in terms of gains and losses from cheating.

1 Introduction

There is an increasing requirement for sharing information across autonomous
entities in such a way that only minimal and necessary information is disclosed.
This requirement is being driven by several trends, including end-to-end inte-
gration of global supply chains, co-existence of competition and co-operation
between enterprises, need-to-know sharing between security agencies, and the
emergence of privacy guidelines and legislations.

Sovereign information sharing [1, 3] allows autonomous entities to compute
queries across their databases such that nothing apart from the result is revealed.
For example, suppose the entity R has a set VR = {b, u, v, y} and the entity S

has a set VS = {a, u, v, x}. As the result of sovereign intersection VR∩VS , R and
S will get to know the result {u, v}, but R will not know that S also has {a, x},
and S will not know that R also has {b, y}.

Several protocols have been proposed for computing sovereign relational op-
erations, including [1, 3, 6, 8, 16]. In principle, sovereign information sharing can
be implemented using protocols for secure function evaluation (SFE) [7].Given
two parties with inputs x and y respectively, SFE computes a function f(x, y)
such that the parties learn only the result.



The above body of work relies on a crucial assumption, that the participants
in the computation are semi-honest. This assumption basically says that the par-
ticipants follow the protocol properly (with the exception that they may keep a
record of the intermediate computations and received messages, and analyze the
messages). Specifically, it is assumed that the participants will not maliciously
alter the input data to gain additional information. This absence of malice as-
sumption is also present in work in which a trusted-third party is employed to
compute sovereign operations.

In a real imperfect world, the participants may behave dishonestly particu-
larly when they can benefit from such a behavior. This benefit can come from
learning more than necessary private information of others or preventing others
from learning the necessary information. In the sovereign intersection example
given in the beginning, R may maliciously add x to VR to learn whether VS

contains x. Similarly, S may exclude v from VS to prevent R from learning that
it has v.

1.1 Problem Addressed

We study the following problem in a sovereign information-sharing setting: How
to ensure that the individual participants, driven solely by self-interest, will be-
have honestly, even though they can benefit from cheating.

We take a game-theoretic approach to address the problem. We design a
game (i.e. strategies and payoffs) that models interactions in sovereign infor-
mation sharing. Through this game, we show that if nobody is punished for
cheating, it is natural for the rational participants to cheat. We therefore add an
auditing device to our game that periodically checks the actions of the partici-
pants and penalizes inappropriate behavior. We derive conditions under which
a unique equilibrium (stable rational behavior) is obtained for this game such
that every participant provides truthful information. We also quantify the re-
lationship between the frequency of auditing and the amount of punishment in
terms of gains and losses from cheating.

The auditing device must have the following essential properties: (a) it must
not access the private data of the participants and (b) it must be space and time
efficient. The auditing device we provide has these properties.

1.2 Related Work

Notions from game theory are used widely in this paper. Game theory was
founded by von Neumann and Morgenstern as a general theory of rational be-
havior. It is a field of study of its own, with extensive literature; see [17] for an
excellent introduction.

Games related to our work include the interdependent security(IDS) games [10,
13]. They were defined primarily to model scenarios where a large number of play-
ers must make individual investment decisions related to a security - whether
physical, financial, medical, or some other type - but in which the ultimate safety
of every participant depends on the actions of the entire population. IDS games



are closely related to summarization games [11] in which the players’ payoff is a
function of their own actions and the value of a global summarization function
that is determined by the joint play of the population. Summarization games
themselves are extensions of congestion games [15, 19] in which players compete
for some central resources and every player’s payoff is a decreasing function of
the number of players selecting the resources. We have adopted some notions
from the IDS games and used them to model information exchange. However,
our problem is different from the one presented in [13], while at the same time
we are not exploring algorithms for computing the equilibria of the games as
in [10].

Inspection games [4, 5, 14, 21] are also related to our work. These are games
repeated for a sequence of iterations. There is an inspector responsible for dis-
tributing a given number of inspections over an inspection period. Inspections
are done so that possible illegal actions of an inspectee can be detected. The
inspectee can observe the number of inspections the inspector performs. The
question addressed is what are the optimal strategies for the inspector and the
inspectee in such a game. The main difference between these games and the
game we have designed is that in the inspection games the inspector is a player
of the game. This is not true for our game, where the inspector acts as a referee
for the players, helping them (via auditing) to achieve honest collaboration.

The modeling of private information exchange using game-theoretic concepts
has received some attention recently. In [12], different information-exchange sce-
narios are considered and the willingness of the participants to share their private
information is measured using solution concepts from coalition games. Our study
is complementary to this work. We are interested in quantifying when people are
willing to participate truthfully in a game, rather than the complementary ques-
tion of whether they are willing to participate at all.

The work presented in [20] models information exchange between a consumer
and a web site. Consumers want to interact with web sites, but they also want
to keep control of their private information. For the latter, the authors empower
the consumers with the ability to test whether a web site meets their privacy
requirements. In the proposed games, the web sites signal their privacy policies
that the consumers can test at some additional cost. The main conclusion of
the study is that such a game leads to cyclic instability. The scenario we are
modeling is completely different. Our players are all empowered with the same
set of strategies. Our games also admit multiple players.

A recent work [22] addresses the problem of an adversary maliciously chang-
ing his input to obtain the private information from another party in a sovereign-
intersection computation. They use concepts from non-cooperative games to de-
rive optimal countermeasures for a defendant (and optimal attacking methods
for the adversary) that balance the loss of accuracy in the result and the loss of
privacy. These countermeasures involve the defendant also changing his input.
Our approach is entirely different. We are interested in creating mechanisms so
that the participants do not cheat and provide truthful information.



1.3 Road Map

The rest of the paper is structured as follows. In Section 2, we formally define
the problem addressed in the paper, and also review the main game-theoretic
concepts. In Section 3, we construct our initial game that captures two-party
interactions in the absence of auditing and study its equilibria. The auditing
device is introduced in Section 4 and its influence on the equilibria of the game
is discussed. Section 5 shows how the observations from the two-player game
generalize to multiple participants. An implementation of the auditing device is
provided in Section 6. We conclude with a summary and directions for future
work in Section 7.

2 Definitions

We first formally define the problem the paper addresses. We then review some
basic concepts from game theory.

2.1 Problem Statement

First we give the classical sovereign information-sharing problem, which provided
the setting for this work. Then we define the honest version of this problem,
which is the concern of this paper. Finally, we specify the honest set-intersection
problem, which is an important instantiation of the general problem.

Problem 1. [Sovereign information sharing] Let there be n autonomous entities.
Each entity i holds a database of tuples Di. Given a function f defined on Di’s,
compute f(D1, . . . , Dn) and return it to each entity. The goal is that in the end of
the computation each entity knows f(D1, . . . , Dn) and no additional information
regarding the data of its peers.

The problem we are trying to tackle is more difficult. We want not only to
guarantee that each participant in the end knows nothing more than the result,
but also that each participant reports his true dataset. More formally:

Problem 2. [Honest sovereign information sharing] Let there be n autonomous
entities. Each party i holds a database of tuples Di. Each entity i reports a
dataset D̂i so that a function f(D̂1, . . . , D̂n) is computed. The goal in the honest
information sharing is to find a mechanism that can guarantee that all entities
report D̂i such that D̂i = Di. As in Problem 1, in the end of the computation
each entity knows only f(D̂1, . . . , D̂n) and no additional information regarding
the data of its peers.

We use game-theoretic concepts to develop a general framework that can
model different information-exchange scenarios and guarantee honest informa-
tion exchange. For concreteness, we also consider:

Problem 3. [Honest computation of set intersection] Special case of Problem 2
in which f(D̂1, . . . , D̂n) = ∩i=1,...,nD̂i.



The problem of honest computation of other relational operations (e.g. join, set-
difference) can be defined analogously; the techniques presented in the paper
apply to them as well.

2.2 Games and Equilibria

We mainly focus on strategic games. In each game there are n players that can
choose among a set of strategies Si, i = 1, 2, . . . , n. A function ui is associated
with each player i with ui : S1, . . . , Sn → R. This is called a payoff function since
it assigns a payoff to player i, for each combined strategy choices of the n players.
The basic question in game theory is what constitutes a rational behavior in such
a situation. The most widely-used concept of rationality is the Nash equilibrium:

Definition 1 (Nash equilibrium). A Nash equilibrium (NE) is a combination
of strategies: x1 ∈ S1 . . . xn ∈ Sn for which

ui(x1, . . . , xi, . . . xn) ≥ ui(x1, . . . , x
′
i, . . . , xn),

for all i and x′
i ∈ Si.

That is, a Nash equilibrium is a combination of strategies from which no player
has the incentive to deviate. A game can have zero, one, or more than one Nash
equilibrium and the payoffs of a player can be different in two different equilibria.

Another rationality concept is that of dominant-strategy equilibrium:

Definition 2 (Dominant-strategy equilibrium). A dominant-strategy equi-
librium (DSE) is a combination of strategies: x1 ∈ S1, . . . , xn ∈ Sn for which

ui(x
′
1, . . . , xi, . . . , x

′
n) ≥ ui(x

′
1, . . . , x

′′
i , . . . x′

n),

for all i and x′′
i ∈ Si and for all j 6= i and x′

j ∈ Sj .

That is, the strategy of every player in a dominant-strategy equilibrium is the
most profitable one (gives the highest payoff to every player) irrespective of what
the other players’ strategies are. A game need not have a dominant-strategy
equilibrium. A dominant-strategy equilibrium is always a Nash equilibrium. The
opposite is not true. Nash and dominant-strategy equilibria capture the behavior
of selfish players who only care about maximizing their own payoffs without
caring about the payoffs of the rest of the players. Nash equilibrium is widely
used in many settings. However, there is no consensus on the best concept for
rationality.

3 Dishonest Information Sharing

We now describe a real-world situation, but of course simplified, and use it to mo-
tivate the definition of a two-player game that can be used to analyze sovereign
information-sharing interactions. Our goal is to formally show that when there is



benefit from cheating that is not accompanied with any bad consequences, there
is no guarantee for honesty. In fact, rational players driven solely by self-interest
will cheat in such a situation.

Rowi and Colie are successful competitors. Though their products cover all
segments of their industry, Rowi has a larger coverage in some while Colie is
stronger in others. By finding the intersection of their customer lists, they both
can benefit by jointly marketing to their common customers. This benefit accrues
from business expansion as well as reduction in marketing costs with respect
to these customers. Rowi has estimated that the benefit he will realize is B1,
whereas Colie’s estimate is B2.

3 Clearly, it is in the interest of both Rowi and
Colie that they find their common customers without revealing their private
customers, and can use sovereign set intersection for this purpose.

In practice, Rowi might be tempted to find more than just common cus-
tomers. Rowi might try to find private customers of Colie by inserting some
additional names in his customer database. By doing so, Rowi estimates that
his benefit can increase to F1. This temptation to cheat and find more holds for
Colie too, and Colie’s estimate of the increased benefit is F2. Clearly, it must be
that F1 > B1 and F2 > B2. We carry this assumption throughout the paper.

However, both Rowi and Colie may also incur some loss due to cheating. For
example, from Rowi’s perspective, Colie might succeed in stealing some of his
private customers. Also, Rowi’s customer database has become noisy as it now
has some fake names. We use L21 (L12) to represent the player’s estimate of the
loss that Colie (Rowi) causes to Rowi (Colie) due to his cheating.

For now, let us consider the symmetric case: B1 = B2 = B, F1 = F2 = F ,
and L12 = L21 = L, and F > B.

We model the above situation as a two-player strategic game with payoffs
described in Table 1. Both players have the same set of strategies: “Play Hon-
estly” (H) or “Cheat” (C). Honest playing corresponds to reporting the true
set of tuples, while cheating corresponds to alternating the reported dataset by
adding extra tuples or removing real tuples.

Colie Play Honestly (H) Cheat (C)
Rowi

B F

Play Honestly (H) B B − L

B − L F − L

Cheat (C) F F − L

Table 1. Payoff matrix for the two-player game where there is no punishment for
cheating. Each entry lists the payoff of Rowi at the left-bottom, and the payoff of Colie
at the right-top corner of the cell for the corresponding combination of strategies.

3 If the benefit is considered to be a function of the number of common customers,
the latter can be determined (without revealing who the common customers are) by
using the sovereign set intersection size operation.



Observation 1 For the strategic game described in Table 1 and given that there
is extra benefit from cheating (F > B), the pair of strategies (C, C) is the only
equilibrium (NE as well as DSE).

To see that (C, C) is a Nash equilibrium, note that for Rowi u(C,C) > u(H,C)
and for Colie u(C,C) > u(C,H). On the other hand, (H, H) is not a Nash
equilibrium since u(C,H) > u(H,H) for Rowi.

Similarly, (C,C) is a dominant-strategy equilibrium since for Rowi u(C,C) >

u(H,C) and u(C,H) > u(H,H) and for Colie u(C,C) > u(C,H) and u(H,C) >

u(H,H). It is easy to see that (H,H) is not a dominant-strategy equilibrium.
Note that the above observation holds irrespective of the value of L. In other

words, both Rowi and Colie will find it rational to cheat even if the loss from
cheating makes F − L less than B for both of them.

4 Enforcing Honesty

We now extend the game described in the previous section with an auditing
device that can check whether any player has cheated by altering the input. An
implementation of such a device is discussed later in Section 6. Whenever the
device finds out that a player has cheated, it penalizes the player. For a fixed
penalty amount, we address the question of how often should the auditing be
performed. We find a lower bound on the auditing frequency that guarantees
honesty. Such a lower bound is important particularly in cases where auditing is
expensive. Conversely, for fixed frequency of auditing we calculate the minimum
penalty that guarantees honest behavior.

An auditing device can be characterized as follows, depending on the degree
of honesty it can guarantee:

1. Transformative: It can induce equilibrium states where all players being hon-
est is a dominant-strategy equilibrium (DSE). Recall that every dominant-
strategy equilibrium is also a Nash equilibrium (NE), though the opposite is
not true.

2. Highly Effective: It can induce equilibrium states where all participants being
honest is the only Nash equilibrium of the game.

3. Effective: It can induce equilibria where all participants being honest is a
Nash equilibrium of the game.

4. Ineffective: Nothing can be guaranteed about the honest behavior of the
players. That is, the auditing device cannot induce equilibrium states where
all players are honest.

We first study the symmetric case in which the players have identical payoffs.
We then extend the analysis to study asymmetric payoffs.

4.1 The symmetric case

Consider the game with the payoff matrix given in Table 2. The semantics of
the parameters B, F and L are the same as in the game described in Section 3.



Two more parameters appear here. The first one, P , represents the penalty that
the auditing device imposes on the cheating player once it detects the cheating.
Parameter f , with 0 ≤ f ≤ 1, corresponds to the relative frequency of auditing,
and represents how often the device checks truthfulness of the data provided by
the players. For brevity, from now on, we will use the term frequency to refer to
relative frequency.

Colie Play Honestly (H) Cheat(C)
Rowi

B (1 − f)F − fP

Play Honestly (H) B B − (1 − f)L

B − (1 − f)L (1 − f)F − fP − (1 − f)L
Cheat (C) (1 − f)F − fP (1 − f)F − fP − (1 − f)L
Table 2. Payoff matrix for the symmetric two-player game enhanced with the auditing
device.

In Table 2, when both players play honestly they each have benefit B. Since
the auditing device checks with frequency f , the expected gain of a player that
cheats is (1 − f)F . That is, a cheating player gains amount F only when he is
not caught, which happens with probability 1 − f . A player who cheats and is
not caught causes expected loss (1− f)L to the other player. Finally, a cheating
player may be caught with probability f and pays penalty P , which gives an
expected loss of fP to the cheating player.

When both players are cheating their payoff is the expected cheating benefit
(1−f)F minus the expected cost of paying a penalty fP as well as the expected
loss caused from other player cheating (1 − f)L. Note that (1 − f)L is the loss
of a player due to the cheating behavior of the opponent, multiplied by the
probability that the latter is not caught.

We now give some important observations from the analysis (details omitted)
of this game. Assume first that all parameters are fixed except for f . In that case
the auditing device gets as input the penalty amount P . The goal is to determine
the corresponding frequency of auditing that can guarantee honest behavior. The
following statement can be made in this case.

Observation 2 For any fixed penalty amount P , there exists a checking fre-
quency for which the auditing device is both transformative and highly effective.
More specifically for fixed P , the equilibria of the game for different values of
frequency f ∈ [0, 1] are:

– For 0 ≤ f < F−B
P+F

, (C,C) is the only DSE and NE of the game. That is, for
those frequencies the auditing device is ineffective.

– For F−B
P+F

< f ≤ 1, (H,H) is the only DSE and NE of the game. That is, for
those frequencies the auditing device is transformative and highly effective.

– For f = F−B
P+F

, (H,H) is among the NE of the game and therefore the auditing
device is effective.



The above observation is rather intuitive. The key quantity is f = F−B
P+F

that can be rewritten as fP = (1 − f)F − B. The left-hand side corresponds
to the expected loss due to the penalty imposed by the auditing device. The
right-hand side is the net expected gain from cheating. Therefore the first case in
observation 2 says that (C,C) is DSE and NE only when fP < (1−f)F−B; that
is when the expected loss from the penalty is less than the expected gain from
cheating. In this case, the auditing device does not provide enough deterrence
to keep off the players from cheating. However, when the expected loss due to
the penalty imposed by the device exceeds the expected gain, the players start
behaving honestly.

The landscape of the equilibria for the different values of the checking fre-
quency is shown in Figure 1. Notice that the above game for all the values of
f 6= F−B

P+F
has only two equilibria in which either both players are honest or both

of them are cheating.

0 1

(H,H) is the only DSE and NE

f

(C,C) is the only DSE and NE

(F−B)
P+F

Fig. 1. Equilibria of the two-player symmetric game with auditing device for the dif-
ferent values of checking frequency f and for fixed penalty amount P . Shaded region
corresponds to (H, H) being both DSE and NE.

Alternatively, we can study the penalty-for-cheating versus frequency-of-
checking trade off the other way round. What happens in the case where the
auditing device is instructed to check at the specified frequencies? What is the
minimum penalty amount it has to impose on cheating players so that honesty
is ensured?

Observation 3 For any fixed frequency f ∈ [0, 1], the auditing device can be
transformative and highly effective for wise choices of the penalty amount. Specif-
ically:

– For P >
(1−f)F−B

f
, (H, H) is the only DSE and NE, and therefore the

auditing device is both transformative and highly effective.

– For P <
(1−f)F−B

f
, (C,C) is the only DSE and NE, and therefore the au-

diting device is ineffective.

– For P = (1−f)F−B

f
,(H, H) is among the NE of the game. That is for this

penalty amount the auditing device is effective.

The above observation is also intuitive as it says that the players will not be
deterred by an auditing device that imposes penalties such that the expected



loss due to them is smaller than the expected additional benefit from cheating.
This is true no matter how often this device performs its checks.

On the other hand, note the following special case. When f > F−B
F

, the
auditing device does not have to impose any penalty on the cheating participants.
The fact that the participants are aware of its existence is daunting by itself.
Notice that this happens particularly in high frequencies and for the following
reason. Due to high checking frequency, the expected gain from cheating (1−f)F
becomes lower than the gain from honest collaboration B. Therefore, the players
have incentive to play honestly.

The equilibria of the game as a function of the penalty amount P are given
in Figure 2.

(C,C) is a NE

(H,H) is a NE

(H,H) is the only

DSE and NE

P

P

(C,C) is the only DSE and NE

0

0

f >
(F−B)

F

0 ≤ f < F−B
F

(1−f)F−B

f

Fig. 2. Equilibria of the two-player symmetric game with auditing device for the dif-
ferent values of penalty regions P for fixed checking frequency f . Shaded region corre-
sponds to (H, H) being DSE as well as NE.

The above observations provide the game-designer the chance to decide,
based on estimations of the players losses and gains, the minimum checking
frequencies or penalty amounts that can guarantee the desired level of honesty
in the system.

Colie Play Honestly (H) Cheat (C)
Rowi

B2 (1 − f2)F2 − f2P2

Play Honestly (H) B1 B1 − (1 − f2)L21

B2 − (1 − f1)L12 (1 − f2)F2 − f2P2 − (1 − f1)L12

Cheat (C) (1 − f1)F1 − f1P1 (1 − f1)F1 − f1P1 − (1 − f2)L21

Table 3. Payoff matrix for the asymmetric two-player game enhanced with the auditing
device.



4.2 The asymmetric case

We now turn to the study of the asymmetric case where the payoffs of the two
players are not necessarily the same. The payoff matrix of the game is given in
Table 3. The easiest way to visualize the equilibria of such a game is by fixing
the penalty amounts imposed on each player (Pi) and giving to the auditing
device the freedom to select the frequency of checking each player (fi). In this
case, we get the landscape of the equilibria shown in Figure 3.

Again the auditing device becomes transformative and highly effective when
it checks frequently enough so that the players cannot tolerate the extra losses
from being caught cheating. Similar observations can be made by studying the
game using the penalty amounts as the free parameters of the auditing device
and fixing the checking frequencies.

Note that in contrast to the symmetric case, the current game exhibits equi-
libria in which the two players do not pick the same strategy. This is the case, for
example, when the auditing device checks Colie very frequently and Rowi quite
rarely (upper left-hand corner of the figure); the Nash equilibrium has poor Colie
playing honestly while Rowi is cheating. This example brings out the need for
careful choice of penalties and frequencies; otherwise, the rational players may
be forced into unintuitive behaviors.

(C,C) is the only

(C,H) is the only

(H,C) is the only

(H,H) is the only 

DSE and NE DSE and NE 

DSE and NE DSE and NE

1

1

(F1−B1)
F1+P1

(F2−B2)
F2+P2

f2

f1

Fig. 3. Equilibria of two-player asymmetric game with auditing device for the different
values of penalties (P1, P2). Shaded region corresponds to (H,H) being both DSE and
NE.

5 Generalization to multiple participants

More than two entities are often involved in an information-sharing situation.
To model such situations we extend our two-player game to n players.



Each player has again two possible strategies: to play honestly (H) or to
cheat (C). We use indicator variable hi to denote the strategy of player i:

hi =

{

1, if player i is playing honestly
0, otherwise.

We use vector h to represent the strategies of all n players. The vector h−i

represents the strategies of all players except for player i. Motivated by [10], we
design the n-player game by forming a payoff function that adequately describes:
(a) the gains/losses a player has due to his own actions, and (b) the gains/losses
due to the behavior of others.

The notation is along the same lines as used in the two-player game. We again
assume the existence of an auditing device that checks on players with frequency
f and imposes penalty P for cheating. We consider the case where the values
of f and P are the same for all players. Assume that the benefit from honest
collaboration for each player is B. The increased benefit of player i due to his
cheating is given by function F , which is assumed to be the same for all players.
The specific form of function F depends on the application domain. However,
we do assume that it is monotonically increasing in the number of players that
play honestly. That is, the larger the number of honest players in the game, the
more the dishonest player gains by exploiting their honesty. Finally, assume that
the loss a player i experiences due to the cheating of another player j is given
by Lji. The payoff of player i is thus a function ui : {H,C}n → R, which can be
written as:

ui(h) = hiB + (1 − hi)(1 − f)F(‖h−i‖) − (1 − hi)fP

−
n

∑

j=1,j 6=i

(1 − hj)(1 − f)Lji (1)

The payoff ui of player i depends on the strategies picked by the participating
players and it consists of four terms. The first two terms correspond to the gains
of the player and the last two correspond to his losses. The losses are due to either
his own choices or the choices of the rest of the participants. More specifically,
the first term is the gain player i has in isolation (irrespective of the strategies
of the rest n − 1 players) when he plays honestly. The second term is his gain
when he decides to cheat. This gain depends on the strategies of others as well.
The third term, (1 − hi)fP , corresponds to his loss when he decides to cheat
and he is caught. In that case, he experiences an expected loss of fP . The last
term represents his loss due to the behavior of the other participants.

For building some intuition, consider the following special cases. When all
players except player i cheat, then the payoff of player i would be:

ui(h−i = 0, hi = 1) = B −

n
∑

j=1,j 6=i

(1 − f)Lji.

If player i decides to cheat as well, his gain is:



ui(h = 0) = F(0) − fP −

n
∑

j=1,j 6=i

(1 − f)Lji.

Although it seems that the analysis of the auditing device in the presence
of n players could be more demanding, it turns out that some intuition and the
results from the two-player game carry over.

Assume we fix the checking frequency f with which the auditing device checks
the participating players.

Proposition 1. For the n-player game where the payoff of each player i is given
by ui as defined in equation 1, the following is true: For fixed frequencies f ∈ [0, 1]

an auditing device that imposes penalty P >
(1−f)F(n−1)−B

f
is transformative

and highly effective. That is, for those values of f and P , (H, H, ..., H) is the
only combination of strategies that is DSE and NE.

Proof. (Sketch) First we show that the auditing device is transformative. For

this, we have to show that when P >
(1−f)F(n−1)−B

f
each player i prefers hi = 1

irrespective of the strategies of the other n − 1 players. This comes down to
proving that the inequality:

ui(h−i = 1, hi = 1) > ui(h−i = 1, hi = 0) (2)

is true for player i (and thus for every player). If inequality 2 holds for h−i = 1,
then it would also hold for any other h−i 6= 1. This means that even in the
worst-case, where all n − 1 other players are playing honestly (this is the case
where player i has the highest benefit from cheating), player i still has more
benefit from being honest than from cheating. This makes hi = 1 dominant
strategy. Indeed by solving inequality 2, we end up with a true statement.

Then we have to show that the auditing device is also highly effective. For

this we need to show that when P >
(1−f)F(n−1)−B

f
there does not exist an

equilibrium other than (H,H,...,H).
The proof is by contradiction. Assume there exists another equilibrium where

x players are playing honestly and n − x players are cheating, with x 6= n. Now
consider a player i with hi = 1. Since we have assumed an equilibrium state, the
following should be true:

ui(h1 = 1, . . . , hi = 1, . . . , hx = 1, hx+1 = 0, . . . , hn = 0) >

ui(h1 = 1, . . . , hi = 0, . . . , hx = 1, hx+1 = 0, . . . , hn = 0).

This would mean that

B −
n

∑

j=1,j 6=i

(1 − hj)(1 − f)Lji > (1 − f)F(x − 1) − fP −
n

∑

j=1,j 6=i

(1 − hj)(1 − f)Lji,



and thus

P >
(1 − f)F(x − 1) − B

f
. (3)

Now consider a player j from the set of n − x cheating players. Due to the
equilibrium assumption, the following should also hold:

uj(h1 = 1, . . . , hx = 1, hx+1 = 0, . . . , xj = 0, . . . , hn = 0) >

uj(h1 = 1, . . . , hx = 1, hx+1 = 0, . . . , xj = 1, . . . , hn = 0).

This would mean that

(1 − f)F(x) − fP −

n
∑

i=1,l6=j

(1 − hi)(1 − f)Lij > B − (1 − f)

n
∑

i=1,l6=j

(1 − hi)(1 − f)Lij

and thus

P <
(1 − f)F(x) − B

f
. (4)

However, inequalities 3, 4 and the constraint P >
(1−f)F(n−1)−B

f
cannot be

satisfied simultaneously, due to the monotonicity property of F . Therefore the
auditing device is also highly effective. �

In a similar manner we can show the following proposition:

Proposition 2. For the n-player game where the payoff of each player i is given
by ui as defined in equation 1, the following is true: For fixed frequencies f ∈ [0, 1]

an auditing device that imposes penalty P <
(1−f)F(0)−B

f
is ineffective. That is,

for those values of f and P , (C, C, ..., C) is the only combination of strategies
that is NE and DSE.

Finally we can generalize the above propositions in the following theorem:

Theorem 1. For the n-player game where the payoff of each player i is given
by ui, as defined in equation 1, the following is true: For x ∈ 1, . . . , n − 1 and for

any f ∈ [0, 1], when the auditing device imposes penalty (1−f)F(x−1)−B

f
< P <

(1−f)F(x)−B

f
, then the n-player game is in an equilibrium state where x players

are honest and n − x players are cheating.

Consequently, the equilibria landscape looks as in Figure 4.

6 Auditing Device

We turn now to a discussion of the feasibility of realizing the auditing device.
The auditing service must be space as well as time efficient. It must also not see
any private data of any of the participants.
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(1−f)F(0)−B

f

(1−f)F(n−1)−B
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Fig. 4. Equilibria of the n-player symmetric game with auditing device for different
values of penalty P . Shaded region corresponds to (H,H) being both DSE and NE.

6.1 Incremental multiset hash functions

Our proposed auditing device makes use of incremental multiset hash functions
[2], which are hash functions that map multisets of arbitrary finite size to hashes
of fixed length. They are incremental in that when new members are added to
the multiset, the hash can be quickly updated.

Definition 3 (Multiset hash function [2]). Let (H, +H,≡H) be a triple of
probabilistic polynomial time algorithms. This triple is an incremental multiset
hash function if it satisfies:

– Compression: H maps multisets of a domain D into elements of a set with
cardinality ≈ 2m, where m is some integer. Compression guarantees that
hashes can be stored in a small bounded amount of memory.

– Comparability: Since H can be a probabilistic algorithm, a multiset need
not always hash to the same value. Therefore a means of comparison (≡H)
is needed to compare hashes. For this it should hold that H(M) ≡H H(M),
for all multisets of M of D.

– Incrementality: Finally, H(M ∪ M ′) is computed efficiently using H(M)
and H(M ′). The +H operator makes this possible:

H(M ∪ M ′) ≡H H(M) +H H(M ′),

for all multisets M and M ′ of D. In particular, knowing H(M) and an
element t ∈ D, one can easily compute H(M ∪ {t}) = H(M) +H H({t}).

Multiset hash functions are collision resistant in that it is computationally
infeasible to find a multiset M of D and a multiset M ′ of D such that M 6= M ′

and H(M) ≡H H(M ′).

6.2 Auditing

Auditing is provided by a secure network service, built using a secure coproces-
sor [9]. For the purposes of this paper, it is sufficient to observe that a certified
application code can be securely installed into a secure coprocessor and, once
installed, the application can execute untampered. The remote attestation mech-
anism provided by the secure coprocessor can be used to prove that it is indeed
executing a known, trusted version of the application code, running under a



known, trusted version of the OS, and loaded by a known, trusted version of
the bootstrap code. Communication between the auditing device and the partic-
ipants in the sovereign computation makes use of authenticated encryption that
provides both message privacy and message authenticity [18].

The auditing device (AD) periodically checks the integrity of the data re-
ported by the players, and hands over penalties if needed. As we shall see, AD
accomplishes this check without accessing the private data of the players.

There is a tuple generator TGi, associated with each player i. In the scenario
given in Section 3, TGi may correspond to the customer registration process.
TGi provides legal tuples to the player i that should participate in sovereign
computations. The player i cannot influence TGi into generating illegal tuples4

but can himself fabricate them. Each TGi operates as follows:

1. TGi picks Hi and announces it publicly.
2. For each new tuple t entering the system and to be provided to player i:

(a) TGi computes Hi(t).
(b) TGi sends message (Hi(t), i) to AD.
(c) TGi sends t to player i.

AD maintains for each player i a hash value HVi. This is the hash value of
all the tuples that player i has received from TGi. Upon receiving (Hi(t), i), AD
updates the hash value so that HVi = HVi +Hi

Hi(t). Note that the auditing
device does not know the actual tuples that each player i has received. It only
knows the hash value of this multiset of tuples, which it incrementally updates.

Finally, each player i also maintains locally the hashed value of the set of
tuples it has received, H(Di). Therefore, upon receiving tuple t from TGi, the
player i updates the hash value so that Hi(Di) = Hi(Di) +Hi

Hi(t).
For sovereign information-sharing computation, the players follow one of the

standard protocols that guarantee correct and private computation of the result.
These protocols require that each player i reports Di (usually encrypted) to the
other players or to a trusted third party. Here, we additionally require that along
with the encrypted version of Di, each player i reports Hi(Di).

Note that reporting Hi(Di), along with the encrypted Di, does not reveal
anything about the actual Di. This is due to the assumption that for a given
multiset hash function Hi, it is computationally infeasible to construct multisets
M and M ′ such that Hi(M) ≡Hi

Hi(M
′). Secondly, player i will be reluctant to

report Di along with Hi(D
′
i) such that Di 6= D′

i because that will be a violation
of the protocol and if the entity that received the encrypted Di along with Hi(D

′
i)

takes i to court, the judge will be able to decide in polynomial time whether the
hash value Hi(D

′
i) ≡Hi

Hi(Di).
Given this communication model, the job of the auditing device is straight-

forward. If AD decides to audit player i, it requests the hash value that i reported
during the set-intersection computation. Let this hash value be Hi(Di). Then
AD can decide whether i is cheating by checking whether HVi ≡Hi

Hi(Di).

4 If player i can corrupt TGi into generating illegal tuples on his behalf, it can be
shown that no automated checking device can detect this fraudulent behavior.



7 Summary and Future Directions

A key inhibitor in the practical deployment of sovereign information sharing
has been the inability of the technology to handle the altering of input by the
participants. We applied game-theoretic concepts to the problem and defined
a multi-party game to model the situation. The analysis of the game formally
confirmed the intuition that as long as the participants have some benefit from
cheating, honest behavior cannot be an equilibrium of the game. However, when
the game is enhanced with an auditing device that checks at an appropriate
frequency the integrity of the data submitted by the participants and penalizes
by an appropriate amount the cheating behaviors, honesty can be induced not
only as a Nash equilibrium but also as a dominant-strategy equilibrium. We
addressed practical issues such as what should be the frequency of checking and
the penalty amount and how the auditing device can be implemented as a secure
network device that achieves the desired outcome without accessing private data
of the participants.

In the future, we would like to study if appropriately designed incentives
(rather than penalties) can also lead to honesty. We would also like to explore
the application of game theory to other privacy-preservation situations.
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